
Object-oriented Behavioral Semantics
 With an Emphasis on Semantics of Large OO Business Specifications

Haim Kilov
Merrill Lynch

Operations Services and Technology
World Financial Center

New York, NY 10080-6105, USA
Haim_Kilov@ml.com

Bernhard Rumpe
Institut für Informatik,

Technische Universität München,
80333 Munich, Germany

rumpe@forsoft.de

Ian Simmonds
IBM T J Watson Research Center

30 Saw Mill River
Hawthorne, NY

10532, USA
isimmond@watson.ibm.com

The workshop took place on Monday, October 6th,
1997. With 23 accepted papers of good and high
quality, written by 43 authors, quite a few new and
consolidated ideas could be presented and discussed.
Names and affili ations of the participants physically
present at the workshop are included at the end.

Business specifications are used to understand and
describe businesses independently of any computing
systems used for their possible automation. This un-
derstanding has to be expressed in a simple, clear, pre-
cise, and explicit way, in order to provide the essential
common ground for business domain experts and
software developers. In order for specifications to be
understandable, they have to suppress irrelevant de-
tails (i.e., be abstract) and should not be presented in
terms of possible or existing solutions. It follows that,
for example, business specifications do not have to
provide an owner for system state or behavior (as in
message passing): such owners are required by legacy
OO approaches to system development which have
nothing to do with business specifications.

Usually, operational specifications are less than per-
fect, as shown by the following operational specifica-
tion provided by the Professor and exposed by the
analysts – Sylvie and Bruno:

“The difference between ‘convenient’ and ‘ incon-
venient’ is best explained by an example,” said the
Other Professor, who had overheard the question.
“If you’ ll just think over any Poem that contains
the two words--such as--”

The Professor put his hands over his ears, with a
look of dismay. “If you once let him begin a
Poem,” he said to Sylvie, “he’ ll never leave off
again! He never does!”

“Did he ever begin a Poem and not leave off
again?” Sylvie enquired.

“Three times,” said the Professor.

Bruno raised himself on tiptoe, till his lips were on
a level with Sylvie’s ear. “What became of them

three Poems?” he whispered. “Is he saying them
all, now?”

“Hush!” said Sylvie. “The Other Professor is
speaking!”

Lewis Carroll, “Sylvie and Bruno”

Precise specification of semantics — as opposed to
just signatures — is essential not only for business
specifications, but also for business designs and sys-
tem specifications. In particular, it is needed for ap-
propriate handling of viewpoints which exist both
horizontally — within the same frame of reference,
such as within a business specification — and verti-
cally — within different frames of reference. A (new
or existing) complex system may be considered, on the
one hand, as a composition of separate viewpoints,
and on the other hand, as an integrated whole, proba-
bly at a different abstraction level.

The aim of our workshop — which continued the tra-
dition of the five successful OOPSLA workshops and
an equally successful ECOOP 97 workshop [5] on
behavioral semantics — was to bring together theore-
ticians and practitioners to report on their experience
with making semantics precise and explicit in various
OO specifications. The Proceedings [6] of this work-
shop are available through the organizers. We think
our workshop was a success.

The first four OOPSLA workshops on behavioral se-
mantics led to a book [3]. Some participants of our
workshops contribute to relevant national and interna-
tional (ISO) standards (e.g., in Open Distributed
Processing) and to various OMG documents [1,2,4],
so that the workshop discussions and results will have
a substantial influence on industry standards.

We present very short summaries of the talks, the
raised issues and the discussions. Some material was
shortened or left out as it became part of the final con-
clusions presented at the end of this paper.

Haim Kilov introduced the topic with two quotes:
from Lewis Carroll (Sylvie and Bruno) on anthropo-

morphism, and from Alan Kay (SIGPLAN Notices,
Sept.1997), a keynote speaker of OOPSLA’97, on the
value of understanding the domain and finessing
problems as opposed to solving problems.

Angelo Thalassinidis in a joint paper with Ira Sack,
An Information Modeling Approach to an Epistemic
Typology, gave some insights about the difficulty of
formulating business strategy without being aware of
the lessons of epistemology: the study of knowledge
itself. When it is not used in business, “we keep mis-
understanding each other and making the wrong as-
sumptions”. Modeling (meta-level) knowledge (e.g.,
“everybody knows that everybody knows”) is impo r-
tant for business specifications. Complex knowledge
constructs can be composed using simple information
modeling constructs (Reference and Subtyping). This
is easily understandable and may be applied in, e.g.,
“knowledge environments”, by “knowledge workers”
dealing with distributed knowledge and with issues
like “How can I prove that my organization has the
knowledge that it needs?”. Discussion: everyone
agreed epistemology is useful; we need to be explicit
and acknowledge it. A lot of papers in, for example,
the Harvard Business Review are about these issues
(perhaps not explicitly enough). Some people may
know but be unable to articulate!

Stuart Kent in a joint paper with Kevin Lano, Juan
Bicarregui, Ali Hamie and John Howse, Component
Composition in Business and System Modeling pre-
sented a precise approach for constructing composi-
tions. He emphasized that it’s important how to ma-
nipulate specifications – rather than executables. In
particular, in view integration there may exist overlap-
ping components. If they are executables it’s impossi-
ble to merge them. Specifications help. (You have a
lot of invariants to tie it together.) He showed how to
use black box as well as glass box compositions com-
bined with the techniques of UML and Catalysis and a
formalization based on Larch. There is a need to check
consistency between different models, as well as spe-
cific models against generic models. Also, there is a
need to look for a component that satisfies “what I
need”. Cheap solution – repository of specific models.
Three approaches to semantics to support it: Object
calculus, different logics, category theory (Imperial
College); Larch (Brighton); Pictorial (Kent himself)
[semantics in diagrams] – restricted subset of first or-
der logic. Kent also strongly advocated explicit re-
finement techniques and tools. Components are very
tiny as the authors work in academia. Discussion: You
need the specification of “the system as a whole” b e-
fore treating components! Are tools useful or good?
Perhaps not, as they may encourage developers to skip

thinking, and immediately start to code, with trial and
error. However, for large specifications tools are very
helpful.

Karl Hoech and Gary Daugherty raised issues about
improving the quality of software designs in their pa-
per Assessing the Quality of Formally Specified Types
and Classes. The goal was to provide hard and objec-
tive criteria instead of soft and fuzzy ones (pre- and
postconditions were used extensively). Coupling and
cohesion between classes have been examined using
an extended and adapted version of the Embley-
Woodfield criteria, where classes define ADTs. It was
noted that multiple abstractions for the same class are
prevented by (classical) OO. The challenge “bring a
design that violates our criteria” still stands (could not
find such a design yet). Q: have you applied it to the
Gang of Four design patterns? A: to some, our guide-
lines stand pretty well. Q: The process you use may
perhaps be used to identify frameworks. The concern
was expressed that this approach could only work for
toy examples.

Angelo Thalassinidis gave some interesting insights
in his joint paper with Ira Sack An Ontologic Specifi-
cation of ‘Strategic Signals. Ontology is about the
real meaning of certain things. He applied this theory
to strategic signals – announcements that something
very important is going to happen. Strategic signals
are those that our opponent is not expecting us to
take: threats (harm us and the opponent) and promises
(harm only us). Threats are substantially stronger than
promises. His goal is to describe signals in the busi-
ness context, again using information modeling. What
makes a signal credible? Both presentations by Thal-
assinidis were very interesting “hands in your pockets
presentations”, without slides. The discussion was
about ontology being essential, and about the need for
a “Reader’s Digest epistemology” (i.e., for general
use by non-specialists).

Allan Ash and Haim Kilov in the presentation of
their paper How to ask questions: Handling complex-
ity in a business specification gave some insights into
the difficult task of getting the right information from
the customer, and of presenting the result in small de-
liverables with high information content, visibili ty and
clarity to ensure that specifications will be read. This
was done for a moderately complex piece (account-
ing) of a system for Merrill Lynch. “Everyone glazed
over” at accounting because the domain was perceived
to be dull and overly complex (requirements of 107
users). Using precisely specified generic concepts and
constructs brings a lot of time-consuming decisions up
front: “do things right the first time”. Resolving amb i-
guities is not terribly easy, but well worth it. Impor-

tance of articulation was stressed time and again. They
avoided the word “object”. They concluded that prec i-
sion should be sought before correctness, structure
before content, and precise specifications do not have
to be detailed. Discussion: Q: Are state diagrams
useful and when? A: Business domains go first (“i n-
variants first, operations later”); but invariants may be
motivated by operations (“generalize from bottom”).
State diagrams are too detailed, you can become lost.
Users prefer to think and explain systematically rather
than linearly or locally; state diagrams if used have to
be about a collection of things, not one thing. Emer-
gent properties appear in invariants – how can they be
presented in state diagrams?

Ilia Bider in his joint work with M. Khomyakow
One Practical Object-Oriented Model of Business
Processes, presented an object-oriented meta-model
which allows the definition of organizational objects
that capture and maintain sequences of stages of a
business process. A sequence of stages can be used for
undoing changes as well as reporting the history of a
business process. The framework also allows the stor-
age of future steps that are scheduled, but not yet
done. The extended example of a deal, with deal state
(showing what should be done independently of what
happened before), and deal plan, was used. “Standard
behavior” for a deal does not always work due to dif-
ferent kinds of events (e.g., check arrives “too early”).
The definition is never complete, and the user can
make manual changes. Discussion: This is a very nice
illustration that the only essential business rules are
those in contracts, laws and regulations; all others can
be overridden by someone in the business. Business
processes are about work simplification and efficiency
for people who are still (or may always be) learning
the business, and not necessarily about how it must be
done. That is, work flows are part of (recommended,
supportive) business design rather than (governing,
essential) business specification.

Roger Burkhart described in his paper Schedules of
Activity in the Swarm Simulation System a simulation
model for concurrency. In modeling requirements for
complex systems, the computer becomes the labora-
tory testbench, and very precise specifications are
needed to meet the usual criteria of scientific experi-
mentation. Decomposition in “complex dynamics” is
not easy. Swarm (a collection of objects, together with
a schedule of actions over these objects, with local
clock) enables a population of agents to interact and
produce the resulting behavior. Behavior appears from
bottom-up (abstraction?). Concurrency is a challenge.
The real emphasis is on events. Non-determinism
comes through unconstrained orders of events.

Schedulers can be rather freely defined to process
events. Hierarchical compositions of swarms, reflec-
tive swarms, and observer swarms are possible. The
developed event- and activity-orientation supp-
lements object-orientation. The author’s compos i-
tional techniques go beyond the traditional to express
“the total composition of what’s being done”. Swarm
is publicly available, uses dynamic and multiple classi-
fication (Objective C is used). Challenges of expressi-
bility: distributed state under concurrent update and
access; partial specification; modeling and computa-
tion within a system. Biological and social systems are
not fixed and don’t have fixed b ehavior.

Marc Shafer presented Experiences Related to Inte-
grating Information Modeling with the Business Re-
quirement Definition Process ... He used information
modeling to “pin down business requirements”. He
notes two major problems: business requirements are
too often stated in terms of implementation; and there
are ambiguities in business requirements. “All your
terms are to be 5 or 6 words long because you have to
pin down the context” (e.g., the meaning of such
terms as claim or loss is highly context-depend-ent).
Several real-life examples show business requirements
expressed in terms of solutions and, after asking rele-
vant questions, transformed into require-ments in
terms of the business domain. Pre- and postconditions
and invariants help the business people to articulate
what they are doing. Precise specifications of, e.g.,
loss event exposure, or financial exposures, can be
formulated only by means of precisely specified rela-
tionships using information modeling. This is a for-
malized way to determine and document business
rules; however, there still exists “a lot of kick back
from traditional data modelers”. The same approach
can successfully be used to specify service environ-
ments where Reference and Subtyping relationships
help to understand the situation.

Laurence Phillips presented joint work with Ste-
phen Bespalko and Alexander Sindt State-space
Covering Strategies for Guaranteed Proper Termina-
tion. Mission surety is exhibited if and only if the sys-
tem accommodates its entire input space [including
garbage input]. The strategies lay in finding partitions
of the complete state space, so that for each partition,
it is easy to ensure termination. Instead of considering
each state, consider state properties (that is, charac-
terize states by invariants). “When have I done enough
to give myself a nice system?” The metaphor used is
catching an elephant by enumerating all places where
it is not, and looking at all other places. Conclusion:
formal attention to the full state space before you
write code leads to more robust systems.

Mark Saaltink in joint work with Bran Selic A
Framework for Behavioral Specifications used (ex-
tended) state machine descriptions to specify some
part of a system’s behavior. Precise specifications of
(a part of) the structure and behavior of object appli-
cations are a small but vital part (5 out of about 100
pages) of the UML semantics document. Their ap-
proach aims to be a proposal for tool semantics. The
framework is based on continuously and discretely
changing variables, thus allowing the provision of a
precise semantic foundation for continuous activities
in states, structured states, composite actions, and
multiple views (e.g., of StateCharts). The resulting
general model uses states as a fundamental concept
and derives the event notion from that. The authors
strongly advocate the use of state machines not only
as implementation description but as one of many
specification techniques (e.g., as a definition of the
meaning of various kinds of interaction diagrams).
(They did a non-trivial state machine model encom-
passing discrete and continuous change in 2 weeks.)

Bernhard Rumpe presented some ongoing work of
his group with Ruth Breu, Radu Grosu, Christoph
Hofmann, Franz Huber , Ingolf K rüger , Monika
Schmidt and Wolfgang Schwerin, called Exemplary
and Complete Object Interaction Descriptions, where
a considerable subset of Message Sequence Charts
(MSC) are given a precise semantics. Methodological
guidelines were presented that propose four steps for
using MSCs: starting from a comprehensible set of
exemplary MSCs through generalization, use of repe-
tition, alternatives and hierarchical structuring, the set
of MSCs is completed. These complete descriptions of
system runs are then broken down to state machines
that describe the behavior of individual objects. A
formal, integrated semantics of the notation is neces-
sary to allow the definition of proper context, condi-
tions, transformations etc. to ensure the correctness of
such methodological steps. But this semantics – es-
sential for tool vendors – need not be formally pre-
sented to the users of CASE tools.

Gary Daugherty in his paper State Diagrams as
Views of formal OO Models integrated state machines
with formal specifications. State machines are mapped
to formally defined types, and subtyping is also in-
cluded. States are defined through state predicates.
The goal is to have a bidirectional mapping between
state machines and formal specifications (and thus
have a choice of analysis tools). Declarative style is
easy to support. All transitions are treated as predicate
transformers. During discussion it emerged that there
is a difference between retrieving a state machine from
a lower level description (code), and designing it from

a higher level because some information is not present
in the code (e.g., from the code you may only derive
the minimal invariant, not the intended invariant of the
developer).

Neelam Soundarajam in his paper Interaction Re-
finement in the Design of OO Systems introduced a
formal way of defining interaction refinement in OO
systems. This allows refinement of one interaction by a
sequence of interactions (an invariant is defined to be
satisfied by all such interaction sequences). Different
refinements of the original specification are possible,
and some may introduce additional objects. The re-
finements should be recorded, so the rationale behind
the design is not lost. A refinement is proper if a par-
ticular relation holds between the source and target of
a refinement. Discussion: Can this relation be called a
“refinement invariant” by analogy with the “impl e-
mentation invariant” from C. A. R. Hoare.

Robert France in joint work with Andy Evans and
Kevin Lano, The UML as a Formal Modeling Nota-
tion, overviewed different approaches to give UML a
formal semantics. This is essential since you may be-
lieve you understand “it”, but your understanding may
not be the same as the one of the authors’. “We spent
an afternoon discussing the difference between a rela-
tionship and aggregation; ‘here’s an example that su p-
ports my view’; ‘and here’s an example that supports
my view’ ”. Another approach is needed, or else a
notation cannot be reasonably used. France identified
three approaches: to supplement UML by formal no-
tations, quite like Syntropy; to extend formal notations
with object-oriented concepts, like Object-Z or SDL;
and to develop a formal model from an informal
model. The third approach is the most promising.
Formalization helps to uncover problems with models
and modeling notation. In the authors’ framework,
core concepts are at first informally defined, then for-
malized, and semantic composition and refinement
rules added. Some issues: what are the core concepts
to be formalized; how to compose the interpretation
of a model; how to gauge the appropriateness of an
interpretation; how to use different formalisms; and
how best to present formalized semantics to non-
formalists.

Michael Werner presented his approach to identify
traversal paths (access paths) within partial class dia-
grams, called Visitors, Access Paths and Semantics.
He defined the notion of a visitor pattern, and showed
how to add visit operations. This both makes visibility
explicit and constrains it. Actors get access to objects
they want only through access paths (e.g., such visi-
tors as customers can reach only a limited amount of
information; auditors – a much larger amount). Tra-

versal is like a view. (Motivation: view mechanism in
relational databases.) An application is a composition
of traversals and visitors. Shadow objects are available
for the needs of the traversal initiator (to limit visibil-
ity). When the schema changes, one can update tra-
versals, but use the same visitors. Pre- and postcondi-
tions are placed on visitations of objects along the
path. Q (Miller): does it look like “negative inher i-
tance”? A: yes.

Siobhan Clarke presented some very early work on
composition in a large scale system development in
her paper with John Murphy, Developing a Tool to
support Composition of the Components in a Large-
Scale Development. Through the use of aspect-
oriented programming, components given by func-
tional design, functional code, and black box design
are plugged together. Aspect-specific code relies on
the functional design or code. For functional design,
Clarke wants to use UML, while for describing as-
pects she wants an appropriate aspect language.
“Don’t work with confusing application code.”

Joaquin Miller presented the results of an email dis-
cussion (with Haim Kilov, Peter Linington, Kerry
Raymond, and Bryan Wood), Types, invariants and
epochs: specifying changes in RM-ODP and ODP
information language, about the interpretation of
RM-ODP concepts of types, invariants, static and dy-
namic schemas, and epochs. In particular, a dynamic
schema defines the set of transitions from one __
schema to another __ schema; what is __? This may
lead to changing somewhat the RM-ODP definition of
a static schema. The paper also described how to use
epochs to specify invariant changes (“always” for an
invariant schema may be interpreted as the epoch for
which this schema applies, so that epoch changes oc-
cur less frequently than changes specified in the dy-
namic schemas), and how to compose epochs yielding
a new epoch at a different abstraction level. Not all
state changes should be interpreted as type changes,
but only those that are “of interest” in a particular
context. The authors concluded that RM-ODP does
not always answer questions, but provides a great way
to ask them.

Joaquin Miller then presented another paper: Help!
How to specify policies? Purpose, scope and policies
are the subject matter of the enterprise viewpoint of
RM-ODP. Purpose and scope have been defined.
However, policies require deontic logic. They are de-
fined using contracts which specify obligations, per-
missions and prohibitions — the subject matter of
deontic logic. However, there are quite a few para-
doxes in deontic logic, some of which were demon-
strated in the paper. Miller raised an interesting ques-

tion (to be answered by logicians): Is there a system of
deontic logic that meets our needs? He referred to the
Zeroth International Conference on Practical Systems
of Logic for Policy Specification
(http://enterprise.shl.com:80/policy/). Kent proposed
to include temporal aspects into deontic logic (see,
e.g., papers by Imperial College authors).

Many issues were discussed, resulting in the following
unanimously accepted conclusions. They are very
compact and perhaps may lead to somewhat different
context-dependent interpretations.

• Start from top

• Discover from bottom

• Precision before correctness

• Do not confuse tool use with thinking

• Properties of a complete state space lead to an
invariant

• Articulation is essential:

• “All your terms have to be 5 or 6 words long
because you have to pin down the context.”

• Use ontologies including relationships other
than subtyping, to ask explicit questions about
context

• Be formal, but don’t insist on exposing it

• Separate business from system specifications.

• In code, separate business from plumbing.

• Business rules, even detailed, should not be
provided by developers

• Have a bidirectional mapping between graphical
and formal specifications

• Abstraction (including selection of “appropriate
refinement”) has to be done by humans

• Refinement invariants should include “relevant
concerns” explicitly

• Open systems change their specifications
The diagram given below shows how to use formal
semantics. While the formal semantics of a notation
(representation which may be graphical or not) is
needed to understand the notation, the formalization
need not be exposed to the user. Formal semantics
acts as a justification for the given transformation
techniques that work on the (graphical) notations. The
commutativity of the diagram ensures, in particular,
the correctness of CASE tools (provided they are
more than just mere editors).

The participants’ affiliations in alphabetical order:

Allan Ash, Software Arts Inc.,
70277.3315@compuserve.com.

Ilia Bider, Ibis Soft, ilia@ibissoft.se.
Roger Burkhart, Deere & Company,

rmb@sanatfe.edu.
Siobhan Clarke, Dublin City University,

sclarke@compopp.dcu.ie.
Gary Daugherty, Rockwell/Collins,

gwdaughe@collins.rockwell.com.
Robert France, Florida Atlantic University,

robert@cse.fau.edu.
Karl Hoech, Rockwell/Collins,

kfhoech@collins.rockwell.com.
Stuart Kent, University of Brighton,

Stuart.Kent@brighton.ac.uk.
Haim Kilov, Merrill Lynch, haim_kilov@ml.com. Joa-
quin Miller, MCI Systemhouse, miller@shl.com.

James Odell, James Odell Associates,
jodell@compuserve.com.

Laurence Phillips, Sandia Nat’l Laboratories,
lrphill@sandia.gov.

Bernhard Rumpe, Munich University of Technology,
rumpe@forsoft.de.

Mark Saaltink, ORA Canada, mark@ora.on.ca.
Bran Selic, ObjecTime, bran@objectime.com.
Mark Shafer, USAA, Mark.Shafer@usaa.com.
Ian Simmonds, IBM Research,

isimmond@watson.ibm.com.
Neelam Soundarajam, Ohio State University,

neelam@cis.ohio-state.edu.
Angelo Thalassinidis, MCI Systemhouse,

athalassin@shl.com.
Michael Werner, Wentworth Institute,

wernerm@wit.edu.

Transformations:
composition, refinementGraphical/li near notations

(representations)
MSC, STD, OM, etc.

Graphical/li near notations,
(representations)
 MSC, STD, OM, etc.
and Code

Semantic domain, formally
described using Z, VDM,
Math, or similar

Semantic domain againFormal relationship

Semantics mapping Semantics mapping

References
1. ISO/IEC. Open Distributed Processing - Reference

Model: Part 2: Foundations (IS 10746-2 / ITU-T
Recommendation X.902, February 1995).

2. ISO/IEC. Information Technology - Open Systems
Interconnection - Management Information Systems
- Structure of Management Information - Part 7:
General Relationship Model, ISO/IEC 10165-7,
1995.

3. Object-oriented behavioral specifications, edited
by Haim Kilov and Bill Harvey, Kluwer Academic
Publishers, 1996, ISBN 0-7923-9778-9.

4. OMG Semantics Working Group Green Paper.
OMG Document number ormsc/97-06-10r (Haim
Kilov and Kevin P. Tyson).

5. 11th European Conference on Object-Oriented Pro-
gramming, Workshop on Precise Semantics for
Object-Oriented Modeling Techniques, Jyväskylä,
Finland, 9-13 June 1997; Editors Haim Kilov and
Bernhard Rumpe; Proceedings of Munich University
of Technology, TUM-I9725, May 1997

6. Object-Oriented Programming Languages and Ap-
plications (OOPSLA’97), Workshop on Object-
oriented Behavioral Semantics (with an Emphasis
on Semantics of Large OO Business Specifica-
tions), Atlanta, USA, 6th October 1997; Editors
Haim Kilov, Bernhard Rumpe and Ian Simmonds;
Proceedings of Munich University of Technology,
TUM-I9737, September 1997

