
Roles in Software Development using
Domain Specific Modelling Languages

Holger Krahn Bernhard Rumpe Steven Völkel
Institute for Software Systems Engineering

Technische Universität Braunschweig, Braunschweig, Germany
http://www.sse.cs.tu-bs.de

Abstract

Domain-specific modelling languages (DSMLs) successfully separate the conceptual and
technical design of a software system by modelling requirements in the DSML and adding
technical elements by appropriate generator technology. In this paper we describe the roles
within an agile development process that allows us to implement a software system by using
a combination of domain specific models and source code. We describe the setup of such a
process using the MontiCore framework and demonstrate the advantages by describing how
a group of developers with diverse individual skills can develop automotive HMI software.

1 Roles in a DSML-based development

Domain-specific modelling enables developers to separate previously connected development
activities for a software system. Thus it allows them to concentrate on a single task at a time
which leads to better results [4]. Furthermore, the development becomes more efficient, as parts
of work can be reused from other projects more easily. In accordance to [4] we identify (in a
simplified fashion) the following three activities during development:

• Domain specific modelling languages (DSMLs) are developed, reused or existing ones
are enhanced to express the desired models of the problem domain.

• Code generators are implemented that transform models to an executable solution.

• The project specific knowledge or problem description is expressed in the DSMLs and
the generators are used to map these models into a running solution.

These development activities are usually applied by different people according to their in-
dividual skills. By different code generators or even direct execution of the DSL instances the
models are first class artefacts within the development. They can be used for different tasks
like documentation, automated tests and rapid prototyping [16]. Therefore it is worthwhile to
separate the activities mentioned above and assign them to specific roles:



• A language developerdefines or enhances a domain specific modelling language (DSML)
in accordance with the needs of the product developers.

• A tool developerwrites code generators for the DSML which includes the generation of
production and test code as well as the analysis of the content and its quality. In addition
tool developers integrate newly-developed or reused language processing components and
generators to form tools used within the project.

• A library developerdevelops software components or libraries and simplifies thereby
the code generator because constant reusable software parts do not have to be generated.
Therefore this role is closely connected to thetool developerbut requires more domain
knowledge. One aim of a library is to encapsulate detailed domain knowledge and provide
a simplified interface that is sufficient for the needs of the code generation.

• Theproduct developersuse the provided tools for different activities within the project.
Mainly, they specify a solution using their domain knowledge expressed in DSMLs to
directly influence the resulting software.

The language developer not only defines the syntax of the modelling language respectively
the newly added concepts in that language but also describes its meaning in terms of semantics,
ensures that the new concepts are properly integrated in the existing language and provides a
manual for their use. It is important that the semantics of a language is not only defined by
describing how the generator handles it [9].

In conventional non-agile project settings both roles, language and tool developer, are not
part of the project team. In cases where a commercial off-the-shelf tool is used, they are com-
pletely unavailable. However, the experiences we made so far indicate that it is recommended
to integrate these tool based service activities into the project, leading to a more agile form of
development.

The running system produced by the code generator allows the product developer to gain
insights into the system’s behaviour and thus gives the developers immediate feedback. Then
the product developer might provide new feature requests and in turn the tool and language
developers change the generator implementation or the DSML itself. In accordance to an agile
development process, we argue that all developers should be able to easily adapt and immedi-
ately compile the resulting system after each change to judge the influence of the applied change
easily. This requirement corresponds to the agile principles ofimmediate feedbackandcontin-
uous integration[2]. This is only possible, if the language and tool developers are available
within the project. Furthermore, in smaller projects the aforementioned roles might be taken by
single person, thus the language, tool, library and product developer roles are unified.

The advantage of the development steps and roles is the strict separation of the description
of a solution on a conceptual level and its technical realisation. This is an example of the well
know principleseparation of concerns[5] and permits the ability to independently evolve and
possibly reuse all artefacts. The approach gains its benefit from the fact that technical solutions,
stored in libraries and code generators change less often than the requirements for a certain
application.

Our experience is based on the development of the MontiCore framework [8] which we use
to develop DSMLs and tools which process these DSMLs. MontiCore itself is developed in



an agile way, where the requirements of certain DSML descriptions (the input of MontiCore)
often lead to changes in the generator itself and therefore evolve the MontiCore framework.
MontiCore can be automatically rebuilt after any change in a MontiCore artefact and tests with
different type of granularity ensure the quality of the result.

Our agile model-driven method uses a lot more concepts of other agile methods likeExtreme
Programming[2]: on-site customer, test-first, early feedback, etc. However, instead of a code-
centric approach we concentrate on executable models that we use for production and test code
generation. The main idea as described in [3] is to detect errors as soon as possible and to get
early feedback from customers. Furthermore, the test cases we generate run in full automation,
which makes the development process really agile. An on-site customer can act as a product
developer that is not only able to develop the system in an appropriate way but can also define
tests using the same notation [19]. All roles should develop their artefacts in a test-first manner
regardless if they use or develop DSMLs or write source code. This makes an explicit test role
unnecessary.

To explain such a development process in more detail we have developed a tool chain for
a Human-Machine-Interface (HMI) in an automotive context. Two DSMLs are developed and
used by different roles to produce an HMI based software.

The rest of the paper is structured as follows. Section 2 describes the MontiCore framework
which enables an agile development of domain-specific modelling languages and the tool sup-
port for such a development process. Section 3 describes an illustrative example for the roles in
the process where DSMLs are used for the development of an automotive sub-system. Section
4 relates our approach to other publications and Section 5 concludes this paper.

2 DSML-Framework MontiCore

As an intermediate step towards a fully model-based software development process we currently
advocate a development process that uses code and models at the same time and, more important
at the same level of abstraction. Several kinds of models and source code together express
solutions in a problem-adequate way. This means, the developers do not round-trip engineer and
switch views between code and models, but use models and handwritten code as descriptions
of orthogonal parts. Developers do not look at or modify any form of generated code.

In [7] we have shown how to combine Statecharts and Java source code that exceeds the
approach current CASE tools provide. The developer modifies only the handwritten source
code and the Statecharts without considering the generated source code. This imposes syntactic
constraints between source code and Statecharts, like called events in source code must be
accepted by the Statechart and events have fitting parameters, which are directly displayed on
basis of the Statechart and the handwritten source code. This makes a generation tool much
more useable, compared to a situation, where errors have to be traced back from the generated
source code to the model.

This approach is different from the OMG MDA[13] approach, because MDA describes the
usage of models at different levels of abstraction and basically one-shot model transformations
to transform each models from one level down to a less abstract level. The last transformation
then results in source code that forms the software system. Manual changes in the generated
models resp. source code are generally allowed and therefore, repeated generation becomes



difficult if not impossible. Figure 1 sketches the generation/transformation process as seen
by MDA that is also similar to a classic CASE tool approach compared to our process (b)
where constraints are checked between models and source code. The handwritten source code
is transferred to the generated source code and changed automatically where technical details
are needed to interact correctly with the source code generated from models.

Computational
Independent

Model

Platform
Independent

Model

Platform
Specific
Model

Models Hand-written
Source Code

Generated
Source Code

SW-Libraries
Hand-written
Source Code/
SW-Libraries

Generated
Source Code

(a) MDA- and Classic Case Tool-Approach (b) MontiCore-Approach

generation of

combined with (dependencies exist)

Figure 1: Comparison of MDA and the proposed approach

Executable UML [14] describes an approach where a well-defined subset of the UML is
used to model a system. MontiCore completes this approach by additionally integrating a pro-
gramming language as another kind of model and providing facilities to create new kinds of
models.

MontiCore allows the language developer to define a modelling language by specifying
the concrete syntax in form a context-free grammar. It uses this definition first for generating
a lexer/parser pair with the parser generator Antlr [15]. In addition, it generates the internal
representation (abstract syntax, metamodel) of the language as derivation from the grammar
in form of Java classes. Through an extension mechanism within MontiCore grammars the
standard derivation process can be flexibly adapted.

The language developer can express additional constraints and features that simplify the in-
tegration of the resulting products in the DSLTool framework of MontiCore. This framework
provides standard solutions for tasks like file and error handling, execution order, tree traversal,
template processing [12] or target code formatting. These techniques are a solid basis for the
tool developer to define model transformations, code generation, analysis algorithms and syn-
tactic checks based on the proper semantics and the intended use of the DSML. These solutions
are offered to simplify the development of specific DSML tools within the agile development
process.



Consequently, MontiCore can be seen as a generator on the one hand and as a language pro-
cessing support environment on the other hand. The development of the MontiCore framework
itself is a proof of concept for this approach, because the framework is implemented using a
partial bootstrap process.

3 DSMLs for HMIs

This section demonstrates a practical example that uses the proposed MontiCore method for
developing Human-Machine-Interfaces (HMIs) in cars. HMIs provide a user interface for the
comfort functions of a car and are able to provide various feedback to the user.

Nowadays most car companies use their own HMIs with differences in look and feel, func-
tions, and handling. Even cars of a single company have various configurations with different
features. Taking the project setting of developing an HMI software for a certain car manufac-
turer with the agile MontiCore process, we have identified different activities in the development
process and associate them with our identified roles.

The cooperation of the different artefacts can be found in Figure 2. The mentioned diagram
types and languages are explained in the following.

generates

input

input

uses

DSLTool framework (Part of MontiCore)

HMI
Software

Feature
DSL processor

Menu
DSL processor

Manually
defined

generator

Manually
written HMI-Library

Feature
Diagram

Menu
Structure
Diagram

DSML
Menu Diagrams

DSML 
Feature 

Diagrams

MontiCore
code
generator

MontiCore
code
generator

defineslanguage
developer

product
developer

defines

library
developer

tool
developer

designs

designs
programs

assembles

programs

Figure 2: Generator structure for the HMI

After discussions with the product developers alanguage developerdesigns a DSML defi-
nition for Menu Diagramsthat describe the menu structure of an HMI. This form of description
is specific for HMIs in cars and uses concepts like menus, dialogs, status boxes and user inputs
that correspond directly to the concept used by the manufacturer.

Another task for alanguage developeris to introduceFeature diagrams[4] to the project.
These diagrams allow to model common and variable features and interdependencies between



them. Figure 3 shows such afeature diagram. It is essentially a tree of features, that can either
be mandatory or optional depending on the style of the edge: a black (mandatory) or a white
(optional) circle. The edge decoration denotes alternative features. For the easier integration in
the text-based tools in our proposed development process a textual notation for feature diagrams
is used.

AirConditioning

Communication
Adapter

Ventilation

Navigation
System

Organizer

Car

mandatory optional

alternative

Figure 3: Feature Diagram

A tool developerbuilds a tool that comprises both languages. MontiCore is used to generate
the language processing components and the DSLTool framework is configured to simplify the
internal workflow and the input file handling of the tool. In addition a manually written code
generator for HMI code is added to complete the tool.

The implementation of the generator is simplified by alibrary developerwho develops an
HMI-library that contains certain reusable code parts to program HMI software. The code
generator simply configures the HMI library to form a specific HMI software.

The feature modellerdescribes feature sets which specify possible configurations of a type
series and therefore is an instance of aproduct developer. An HMI-developerdesigns a menu
structure for certain type series of cars. The HMI-developer therefore is another instance of a
product developer. By using the developed tool and choosing a certain configuration for the car,
he can directly generate the resulting software and simulate the result without further help of IT
experts.

4 Related Work

Frequentlymetamodellingis used to create the abstract syntax of a modelling language. The
Meta-Object Facilty [26] is the metamodelling technique standardised by the OMG where the
metamodel is written as a simplified UML Class Diagram and OCL is used to define constraints
on the abstract syntax. The MDA approach provides various ideas of integrating models into
the development process which are primarily described as an input for one shot generations and
therefore makes an agile process with continuous integration difficult. Due to the transforma-
tional nature of the approach the additional roletransformation definition engineeris needed
[11].

The Eclipse Modelling framework (EMF) [21] is another commonly used metamodelling
framework. The meta-metamodel named Ecore can be used to create metamodels with the
EMF framework itself, but also an import from a UML tool or textual notations like [10] and



[22] are possible options. Instances of the DSML can be created by a generic EMF editor. More
sophisticated graphical editors can be either handwritten or created using the Graphical Mod-
elling Framework (GMF) [24]. No strictly defined role based development process is proposed
for the use with EMF.

The Generic Modeling Environment (GME) [23] is an integrated development environment
for domain-specific modelling. The described MontiCore process could be adapted to be used
with GME. A language developer would describe the abstract syntax of a language by a meta-
model and define a graphical concrete syntax. GME is similar to MontiCore because a tool de-
veloper is supported by the environment to develop code generations or model interpretations.
These artefacts can be reused inside GME to support product developers with an individually
configured tool.

MetaCase’s MetaEdit+ [25] uses a menu based editor to define metamodels. Models can be
created through a graphical editor by drag and drop, inputs such as model names are made in
input fields. MetaEdit+ uses its ownReport Definition Languageto navigate over a model in-
stance and create code from it. The MetaEdit+ tool supports a variety of development processes
and therefore does not go deep into process definition.

TheDomain-Specific Language Tools[20] initiative from Microsoft also aims at the design
of graphical DSMLs. The development is divided into three parts: definition of the meta-
model, definition of (graphical) design, and definition of constraints. The meta-metamodel
offers classes, value properties, and relations such as embedding (composition), reference (ag-
gregation) and inheritance. Constraints are expressed in C#, code generation is supported by
the Template Transformation Toolkitwhich allows an iterative access to DSL instances. Sup-
ported target languages for these templates are Visual Basic and C#. Sketches of an appropriate
development process do exist e.g. in [6].

In [1] different roles for a model-driven development in general are presented. In compar-
ison to our approach a more conventional software process is advocated with a separation in a
meta and a project team. The paper mentions additional roles for testing and system analysis
which are fulfilled by all developers in agile projects with activities like test-first design and
constant feedback.

5 Conclusion

In this paper we have explained how an agile development process that uses code and mod-
els at the same level of abstraction can be used to efficiently develop a software system. We
explained the different roles developers play in the realisation of a software when DSMLs are
used to separate technological and application specific aspects. This technique also simplifies
the integration of domain experts into a development team by giving them domain specific tools
to express their knowledge without the need to go deeply into software issues.

The MontiCore framework strongly simplifies the development of DSMLs by providing
an infrastructure the developer can rely on. This simplification is assisted by easy to use and
quickly executed tools that enable a much more agile development process. Therefore, instead
of a strict separation of tool and product developers, we are able to integrate those into the same
project. In addition, we define new roles in a DSML-based project that will be carried out by
developers respectively domain experts.



In the future we will further enhance the features of the MontiCore framework to be able to
quickly develop more complex DSMLs. Furthermore, we will provide a number of predefined
DSMLs that will serve as a basis for specific DSML definitions. Among others, we will develop
a framework which supports UML/P [18, 17] as a special UML profile to model properties of a
software for both, production and test code generation.

References

[1] J. O. Aagedal and I. Solheim. New Roles in Model-Driven Development. InProceed-
ings of Second European Workshop on Model Driven Architecture (MDA), Canterbury,
England, 2004.

[2] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

[3] J. Botaschanjan, M. Pister, and B. Rumpe. Testing Agile Requirements Models.Journal
of Zhejiang University SCIENCE, 5(5):587–593, May 2004.

[4] K. Czarnecki and U. W. Eisenecker.Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley, 2000.

[5] E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[6] J. Greenfield, K. Short, S. Cook, and S. Kent.Software Factories: Assembling Applica-
tions with Patterns, Models, Frameworks, and Tools. John Wiley & Sons, 2004.

[7] H. Grönniger, H. Krahn, B. Rumpe, and M. Schindler. Integration von Modellen in einen
codebasierten Softwareentwicklungsprozess. InProceedings of Modellierung 2006, Inns-
bruck, Austria, pages 67–81, 2006.

[8] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel. MontiCore 1.0 -
Ein Framework zur Erstellung und Verarbeitung domänenspezifischer Sprachen. Tech-
nical Report Informatik-Bericht 2006-04, Software Systems Engineering Institute, Braun-
schweig University of Technology, 2006.

[9] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of ”semantics”?.
IEEE Computer, 37(10):64–72, 2004.

[10] F. Jouault and J. Bzivin. KM3: a DSL for Metamodel Specification. InProceedings of
8th IFIP International Conference on Formal Methods for Open Object-Based Distributed
Systems, LNCS 4037, pages 171–185, Bologna, Italy, 2006.

[11] A. G. Kleppe, J. Warmer, and W. Bast.MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[12] H. Krahn and B. Rumpe. Techniques For Lightweight Generator Refactoring. In
R. Lämmel, J. Saraiva, and J. Visser, editors,Proceedings of Summer School on Gen-
erative and Transformational Techniques in Software Engineering (LNCS 4143), 2006. to
appear.



[13] OMG MDA Website. http://www.omg.org/mda/.

[14] S. J. Mellor and M. J. Balcer.Executable UML: A Foundation for Model Driven Architec-
ture. Addison-Wesley Professional, 2002.

[15] T. J. Parr and R. W. Quong. ANTLR: A Predicated-LL(k) Parser Generator.Softw., Pract.
Exper., 25(7):789–810, 1995.

[16] B. Rumpe. Agile modeling with the UML. In M. Wirsing, A. Knapp, and S. Balsamo,
editors,9th Monterey Workshop 2002 – Radical Innovations of Software and Systems En-
gineering, Venice, Italy, October 7–11. Springer, 2004.

[17] B. Rumpe. Agile Modellierung mit UML : Codegenerierung, Testfälle, Refactoring.
Springer, Berlin, August 2004.

[18] B. Rumpe.Modellierung mit UML. Springer, Berlin, May 2004.

[19] B. Rumpe. Agile Test-based Modeling. InInternational Conference on Software Engi-
neering Research & Practice. CSREA Press, June 2006.

[20] DSL-Tools Website. http://msdn.microsoft.com/vstudio/DSLTools/.

[21] Eclipse Modeling Framework website. http://www.eclipse.org/emf/.

[22] Emfatic Website. http://www.alphaworks.ibm.com/tech/emfatic.

[23] The Generic Modeling Environment Website.
http://www.isis.vanderbilt.edu/projects/gme/index.htm.

[24] Graphical Modeling Framework Website. http://www.eclipse.org/gmf/.

[25] MetaCase Metaedit+ Website. http://www.metacase.com/.

[26] Meta-Object Facilty Website. http://www.omg.org/mof/.


