
T U M
I N S T I T U T F Ü R I N F O R M A T I K

3rd International Workshop on
Critical Systems Development with UML

Jan Jürjens, Eduardo B. Fernandez,
Robert France, Bernhard Rumpe

TUM-I0415
September 04

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-09-I0415-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
�
2004

Druck: Institut für Informatik der
Technischen Universität München

3

4

3rd International Workshop on

Critical Systems Development with UML

Jan Jürjens, Eduardo B. Fernandez,
Robert France, Bernhard Rumpe

5

6

Preface

The high quality development of critical systems (be it real-time, security-
critical, dependable/safety-critical, performance-critical, or hybrid systems)
is difficult. Many critical systems are developed, deployed, and used that do
not satisfy their criticality requirements, sometimes with spectacular fail-
ures.

Part of the difficulty of critical systems development is that correctness
is often in conflict with cost. Where thorough methods of system design
pose high cost through personnel training and use, they are all too often
avoided. UML offers an unprecedented opportunity for high-quality critical
systems development that is feasible in an industrial context.

The workshop series on “Critical Systems Development with UML
(CSDUML)” aimes to gather practitioners and researchers to contribute to
overcoming the challenges one faces when trying to exploit this opportunity.

The previous, editions of the series were the CSDUML’02 satellite work-
shop of the UML’02 conference in Dresden (Germany) and the CSDUML’03
satellite workshop of the UML’03 conference in San Francisco. Both had
been very successful, and were among the largest satellite workshops of the
UML conferences.

The proceedings at hand now present the accepted contributions for the
CSDUML’04 workshop, which takes place on October 12, 2004, as part of
the UML’04 conference (October 10 - 15, 2004, in Lisbon, Portugal). It is
again organized in cooperation with the pUML (precise UML) group and
the working group on Formal Methods and Software Engineering for Safety
and Security (FoMSESS) of the German Computer Society (GI).

Out of a number of high quality papers submitted to the workshop, seven
were selected to be presented in talks at the workshop and included as full
papers in the proceedings. Three were selected to be presented as short talks
and included as short papers. Furthermore, there are six posters presented
at the workshop, which are included in the proceedings as abstracts. The
highly selective acceptance rate again keeps the workshop focussed and on
a high level of quality, and provides sufficient time for discussion.

In addition, the workshop features an invited talk by Connie Heitmeyer
(Naval Research Laboratory) with title “On the Role of Tools in Specifying
the Requirements of Critical Systems”. Also, there will be a panel with the
title ”Providing tool-support for critical systems development with UML:

7

Problems and Challenges” including distinguished experts, which is hoped
to create some lively discussions on the subject.

As with the CSDUML’02 and CSDUML’03 workshops, it is planned
to edit a special section of the Journal of Software and Systems Modeling
(Springer-Verlag) with selected contributions of the workshop. Up-to-date
information on this and the workshop can be found at the workshop home-
page.1

We would like to express our deepest appreciation to the authors of
submitted papers, and to the program committee members and the addi-
tional referees. We would also like to thank the UML’04 conference chair
Ana Moreira (New University of Lisbon), the workshop chair Ambrosio To-
val (University of Murcia), the local arrangements chair Isabel Sofia Brito
(Politécnico de Beja), and the students involved in the organization at TU
Munich for their help. In addition, some of the organizers thank their vari-
ous projects (including Verisoft) for their personal funding.

Jan Jürjens September 2004
Eduardo B. Fernandez
Robert France
Bernhard Rumpe
(Organization team for CSDUML’04)

1http://www4.in.tum.de/̃ csduml04

8

Program committee

Doo-Hwan Bae, Korea Advanced Institute of Science and Technology (KAIST),
South Korea
Marko Boger, Gentleware
Eerke Boiten, Univ of Kent
Ruth Breu, University of Innsbruck
Manfred Broy, TU München
Alessandra Cavarra, University of Oxford
Betty H. C. Cheng, Michigan State University
Gregor Engels, University of Paderborn
Martin Gogolla, University of Bremen
Radu Grosu, State University of New York at Stony Brook
Holger Hermanns, University of Saarbrücken
Heinrich Humann, LMU München
Johan Lilius, Åbo Akademi University
Ileana Ober, VERIMAG
Francesco Parisi-Presicce, Universita di Roma and George Mason University
András Pataricza, Budapest University of Technology and Economics
Gianna Reggio, University of Genova
Peter Schmitt, University of Karlsruhe
Bran Selic, IBM Rational Software
RK Shyamasundar, Tata Institute of Fundamental Research, Bombay
Ketil Stølen, SINTEF ICT, Oslo
Jon Whittle, NASA Ames Research Center
. . . and the organizers.

Additional referees

Folker den Braber
Zaid Dwaikat
Jan Hendrik Hausmann
Frank Innerhofer-Oberperfler
David N. Jansen
Mass Soldal Lund
Stefan Sauer
Fredrik Seehusen
Fredrik Vraalsen
Barbara Weber

9

Technical Organization

Michele Gatabazi, TU München
Dimitri Kopjev, TU München
Britta Liebscher, TU München
Mathias Riedl, TU München
Ines Rieger, TU München
Lucas Schib, TU München
Darina Velcheva, TU München

10

Contents

1 On the Role of Tools in Specifying the Requirements of Critical
Systems 12

2 Using UML OCL and MDA to support development of Modular
Avionics Systems 13

3 A Lightweight Approach to Critical Embedded Systems Design
using UML 28

4 Exploration games for safety-critical system design with UML
2.0 41

5 Supporting Confidentiality in UML: A Profile for the Decen-
tralized Label Model 56

6 Using Aspects to Manage Security Risks in Risk-Driven Devel-
opment 71

7 UML 2.0 Interactions: Implementation and Refinement 85

8 A UML Class Diagram Analyzer 100

9 Rigorous development of reusable domain-specific components
for complex applications 115

10 From Misuse Cases to Collaboration Diagrams in UML 130

11 Formal Specification of Security-relevant Properties of User In-
terfaces 139

12 Verification Tool for the Active Behavior of UML 147

13 Towards Engineering Development of Distributed Stochastic
Hybrid Systems with UML 149

14 Integrating an UML tool in an Industrial Development Process
– a Case Study 151

15 Verification and Test of Critical Systems with Patterns and
Scenarios in UML 153

16 A Case Study of Software Development with eUML and
VDM++ 155

17 A Semantics of UML Sequence Diagrams Based on a Causality
Relationship between Actions 157

11

On the Role of Tools in Specifying the
Requirements of Critical Systems

Constance Heitmeyer
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington, DC

ABSTRACT

In 1978, a group of researchers led by Dave Parnas developed a tabular nota-
tion for specifying software requirements called SCR (Software Cost Reduction)
and used the notation to specify the requirements of a mission-critical program,
the Operational Flight Program for the A-7 aircraft. Since then, the require-
ments of many critical programs, including control software for nuclear power
plants and other flight programs, have been specified in SCR. To support for-
mal representation and analysis of software requirements, NRL has developed
a state machine model to define the SCR semantics and built a suite of tools
based on this semantics for checking requirements specifications for properties
of interest. Such tools are especially valuable for specifying and analyzing the
requirements of software systems where compelling evidence is required that the
system satisfies critical properties, such as safety and security properties. This
talk describes the many different roles that formally based software tools can
play in debugging, verifying, and validating the requirements of critical software
systems. The author’s recent experience and lessons learned in specifying the
requirements of a security-critical cryptographic system and two software com-
ponents of NASA’s International Space System are also described.
—————————————————————

Connie Heitmeyer, the chief designer of the SCR toolset, heads the Software
Engineering Section of the Naval Research Laboratory’s Center for High Assur-
ance Computer Systems. Recently, she served as co-program chair for MEM-
OCODE 2004, the 2nd International Conference on Formal Methods in Hard-
ware/Software Co-Design. She is currently serving as co-chair of the Experience
Reports Track at ICSE 2005. She is a member of the editorial boards of the
ACM Transactions on Software Engineering and Methodology, the Require-
ments Engineering Journal, and the Journal on Software and System Modeling.
Her research interests are in formal specification and formal analysis of software
and system requirements and of high assurance software systems. She is also
very interested in transferring formal methods technology and tools to software
practitioners.

12

���������	��
 �������� ������
 ��� ������� � �!�#"��
� $&%#$('��#�)*$+�,���.-/
 �0�1� '2�3"���%4�2�,� �256�8709:�;��$()*�

<>=@?BAB?DC@CFEHGJILK@M.N4EOKQPSR6?UTV=QEOWVP4<XEY?DZL[
\^]`_ba�cedgf3]`hOd�ikjml�ikf3_onLdg]pcJqYrVst]VhLrV]vuLwxhostyz]pcg{estd}|.ikj�~�ikcg��uY�x]V{e�tstho��dgivhQu

~6�+���3�2\^\�uYw+� ���
���z�L�k���2�z�Y���e�v�����Y���:�O�z�2�Y�k�v ;�¡�Y���2¢�£O¤�¥��z¦��}�O���k§��¨���F�¡©z§

ª�«�¬VV®2¯b°kv±3²�³ s´{J_ba�_�]`c6_Lcg]`{e]Vh�dg{^a.µ,iO¶L]V��\Jcgs´yv]Vh:·¸cgr ³ s¹dg]Vr`dgnYcg]+a�_o_Ycgizakr ³
dgi.¶L]`yz]V�tiv_Lf3]Vh�dJi�jmº»h�dg]V�kc¼a2dg]�¶0µ,iO¶LnL�´a�c6·¸yOs´ikhostrV{^qO|Y{¨dg]Vf3{V�b½¸]�¾�nos¹cg]�¶#{¨|L{¨¿
dg]VfÁÀ�] ³ a�yOstivnYc ³ a�{�À�]V]Vh(r�ak_YdgnLcg]�¶6sth+aJÂ;�´a�dejUi�cgfÃº»ho¶L]V_�]Vho¶L]Vh�d�µ,iO¶L]`�YnL{estho�
w^µÅÄÆa�hohLikd¼a�dg]V¶0Ç>s¹d ³ d ³]��xÀYÈ»]Vr`d(l�ikho{¨dec¼a�s´h�d&ÄFakhL�vnba��v]v� ²�³]+f3iO¶Y]V��akho¶
s¹dg{^rVikho{¨dec¼a�s´h�dg{ ³ a2yv](d ³]Vh0À�]V]Vh0dec¼akho{¨jBikcgf3]�¶Hdgi�jUikcgf�a#Â;�´a�dejBikcgfÉqY_�]`rVs¹Êbr
µ,iO¶Y]V�Ë� ²�³]J_oak_�]`c�¶L]V{erpcgs´À�]`{�d ³]¸À�]Vho]pÊodg{�d ³ st{�ak_L_Lcgivakr ³ rVikno�´¶ ³ a�yz]>dgi6d ³]
¶Y]Vyz]V�tiv_Lf3]Vh�d�uOrV]`cedgs¹ÊbrVa�dgstivh,akhb¶.sthor`cg]Vf3]`hOd¼a���r ³ akhL�v]^i�j�ºeµÅ·Ì{¨|Y{¨dg]Vf3{V� ²�³]
oak�]`c,ak�t{ei1¶L]`{er`cgstÀ�]V{#{eikf3]0ikj6d ³]H_Yc¼akr`dgstr�a��^¶YstÍ�rVno�¹dgst]V{�Ç>std ³ d ³]Hf3iO¶L]V�
dec¼a�ho{¨jUi�cgf�a�dgstivhH_Ycgi�rV]V{e{V�

Î ÏoÐ¸Ñ�Ò@Ó6Ô+Õ(Ö�Ñ@×gÓ¸Ð

Ø^=@[6EzÙo?UE�Ú`?DILK.?BKQP�ÛQÜ¼ÚpW`N:Ý¡ÞFIYÚp=HT2?BÙb?DAQEYKQP#M,?BAB?´ÚVEOW`N�ß�EYWp[xMÅI�Ùo?BK@Z+ÚpI�à^EOWVP@Ü�E�P�?BÜ¼ÚpW`?BÞ@Û�Úp[vP
T2IYMÅC@Û@Úp[�W�ÜpNbÜ¼Úp[kMáT�IYKQT�[�C�Ú�âbK@I�à6K�EYÜmãeKLÚ`[�ZLW`EOÚp[kP3ä1IbP@Û@ABEYW�å(Ùo?BIYKQ?BTkÜJÝ¡ãgä1å+ß¸æ´ç�è»éOGJIYW`[
ÚpIHÚ`=@?BÜ+T2ILKQT2[kC�Ú&?BÜ&Úp=@[#Ü¼[kCQEOWVE�Ú`?DILKSÞ�[2Úgàx[�[kK P�[kP�?UT�EOÚp[vP Ü¼IYêËÚgàxEYWp[3EOCQC@AD?UT�EOÚp?BIYKQÜ.Ý¡ÜpÛQTV=
EYÜ,ëQ?BZY=oÚ0T2ILKLÚ`WpILA}ì�êíÛ@[kA&MHEOKQEYZY[kM,[kKoÚVß#EOKQPîT2ILM,CQÛ�Úp[kWHWp[vÜ¼ILÛ@W`T�[4MHEYKQEOZL[�MÅ[�KoÚ Ýí[Yé ZQé
IYC�[�WVE�Úp?BIYK0ÜpN�ÜgÚ`[�MHÜVß�ébãeKHÚpWVEYP@?´Ú`?DILKQEOA�EzÙb?DILK@?BTkÜ¸ÜpN�ÜgÚ`[�MHÜJÜpIOêËÚgà^EOW`[6à^EYÜJM,ILK@IYAB?DÚp=@?UT(EYKQP
Úp?BZY=oÚpABN�T2IYÛQC@AD[vP!ÚpIÆÚp=@[4=QEOWVP�à^EOW`[,?BKÌILW`P�[kW3ÚpIïZY[�Ú�Úp=@[4Wp[vðoÛ@?DW`[kPñW`[kEYA´ò»Úp?BMÅ[0C�[�WpêíIYWpò
MÅEYKQT2[Lémó&I�àôÚp=QEOÚ.C@W`I�T2[kÜ`ÜpIYW3Ü¼C�[�[vP@Ü3=QEzÙL[Å?DKQT�Wp[vEYÜp[kP!ESM,I�P�ÛQABEYW.EOC@CQWpIoEYTV=ïTkEOKñÞ�[
ÛQÜ¼[vP�à6=@?BAUÜgÚ>Ü¼Úp?BADA�MÅ[�[�Úp?BK@Z�CF[kW¼êíILWpMHEOKFT2[¸W`[kðoÛ@?BW`[�MÅ[�KoÚ`Üké�Ø^=@?UÜ�Üp=@ILÛ@ABP#EOABADI�à�MÅILWp[^EOZL?DAB[
MÅEY?DKoÚ`[�KQEYKQT2[^IOê�ÜpNbÜ¼Úp[kMHÜ�êíIYWXÚ`=@[6Û@C@ZLW`ELP�[^IOêFÞ�IOÚ`=0EOC@CQAD?UT�EOÚp?BIYKQÜXEYKQP.=FEOWVP�àxEYWp[Lé�Ø^=@?BÜ
Ü¼[kCQEOWVE�Ú`?DILK.IOê�T2ILKQT2[kWpKFÜ�MÅEOÚ`TV=@[vÜ�Úp=Q[&EOC@C@W`ILELTV=�ÚVEOâY[kK#à6?DÚp=0ä1IbP@[�AQõ+Wp?BÙY[kKHå&WVTV=@?´Ú`[kT2ò
ÚpÛ@W`[0Ý¡ä1õ(å+ß�æ öQìp÷�è�à6=Q[�W`[�EH<¸ABEOÚ¼êíILWpMøãeKQP�[�C�[�KFP�[�KoÚ+ä I�P�[kAJÝ}<>ãgäÆß�Ý¡à6=@?BTV=1T�IYKoÚ`EY?DKFÜ
P�[2ÚVEO?BABÜ¸IOê�Wp[vðoÛ@?DW`[kP#êíÛ@KFT�Úp?BIYKFEOAB?´ÚgN@ß�?UÜ>MHEOCQCF[vP,ÚpI.E�<¸ABEOÚ¼êíILWpMúùbCF[vT2?DûFT(ä1IbP@[�A�Ý}<Jù�äïß
Ýíà6=@?UTV= T2IYKoÚVEO?BKQÜ^Úp=Q[�êíÛ@KQT�Ú`?DILKQEOAB?DÚgN:MHEOC@C�[kPSÚ`I0EHÜ¼C�[kT�?´û�T�[2ü�[kT�Û�Úp?BIYK�[�KbÙb?BWpILK@MÅ[�KoÚVß2é
Ø^=@[�W`[2êíILWp[�ä1õ&åá?BÜxÞ�[�?BK@Z,[2ü�C@ABIYW`[kP0ELÜxE.àxEzN,Ú`I#Þ@W`?BK@Z.Ú`=@[�ÞF[kK@[2û@ÚVÜ^IOêmMÅI�P�[kADAB?DKQZ.Ú`I
ãgä1åýP�[�ÙL[�ABIYC@MÅ[kKLÚ&EYKQP4EYABÜpI,ÚpIHÜpÛ@C@C�IYWpÚ&?DKQT�Wp[kMÅ[�KoÚ`EYA;TV=QEOK@ZL[Yé
åøÜpÛ@ÞQÜ¼Ú`EYKLÚ`?BEYA^ÞQEOW`Wp?B[�W,C@W`[�ÙL[�KoÚp?BK@Z1Ú`=@[SêíÛ@ABA6ÞF[kK@[2û@ÚVÜÅIOê(ãgäÆåøÞ�[�?BK@ZñW`[kEOAB?UÜ¼[vP�?BÜ

Úp=@[�T�[�WpÚp?DûFT�EOÚp?BIYK�C@W`IbT�[kÜ`Ü�é�å(Ùo?BIYKQ?BTkÜ&Ü¼N�Ü¼Úp[kMÅÜ^M#ÛQÜ¼Ú&ZYI,Úp=@W`IYÛQZY=�EÅWp?BZYILWpILÛQÜ+Ý}EOKQP�[�übò
CF[kKQÜ¼?BÙY[zßHT2[kW¼Ú`?´û�T�E�Ú`?DILKÃC@W`IbT�[kP�ÛQWp[à6=@?UTV=Ã?BKQT2ABÛQP�[vÜ4P�[kMÅIYKQÜ¼ÚpWVE�Ú`?DK@ZñÚ`=QE�ÚSÜpEOêí[2ÚgNîWp[�ò
ðLÛQ?DW`[�MÅ[�KoÚVÜ+=FEzÙY[,ÞF[k[�K!M,[�Úké�GJÛ@W`W`[�KoÚ�CQW`ELT�Úp?UT2[,?UÜ+ÞFEYÜp[kP1ILKÆÚ`=@[,ÚpWVEYP�?DÚp?BIYKFEOA�P�[kÜp?DZLK
EOC@C@W`ILELTV=!EYKQP!Úp[kKQP@Ü�ÚpI1[�ü�EYMÅ?DK@[4Ü¼IYêËÚgàxEYWp[HEYÜ#E à6=@ILAD[Lì;MHEOâb?DKQZÆEOADÚp[kW`EOÚp?BIYKñIOê^Úp=Q[
[�Ùb?BP@[�KQT�[J[�üoÚ`Wp[kMÅ[�ABN�P�?´þ0T�Û@A´Ú>EYKQP.E+Ü¼[kWp?BIYÛQÜ�?BM,C�[kP@?DMÅ[�KoÚ�ÚpI�MHEO?BKoÚ`EY?DKQEYÞ@?BAD?DÚgNYéOGJAD[vEOW`ADN
ÚpI3EYTV=@?B[�ÙL[xÚp=@[6Þ�[�K@[�û@Ú`Ü>IOêFãgäÆåÃE+MÅILWp[^MÅI�P�Û@AUEOW>EOCQC@WpIoEYTV=�?UÜXW`[kðoÛ@?BWp[vP�é�ä ILÜ¼Ú¸Ü`E�êí[2ÚgN

13

Wp[vðLÛQ?DW`[�MÅ[�KoÚVÜ�EYWp[JC@ABELT2[vP3IYK.Úp=@[^Ü¼N�Ü¼Úp[kMýÞoN3Ü`E�êí[�ÚgN�EOKQEYADN�Üp?BÜmIOê@Ú`=@[xT�IYW`[>êíÛ@KFT�Úp?BIYKFEOAB?´ÚgN
EOKQPïP�[kÜp?DZLKÿÝí?»é [Yé�IOê¸Úp=@[Å<>ãgäÆß2é�Ø^=@?BÜ�CQEYCF[kW+ÛFÜ¼[vÜ(Ú`=@[��+Þ��g[kT2Ú�GJILKQÜgÚ`W`EY?DKoÚ��mEOKQZYÛQEYZY[
Ý��3G���ß^ÚpI0T�EYC�ÚpÛQWp[�Ú`=@[kÜp[�ÜpEOêí[2ÚgN4Wp[vðLÛQ?DW`[�MÅ[�KoÚVÜ6EYÜ6CQEYW¼Ú&IYê�EH<¸ãgä�éFØ^=Q[kÜp[��3G���T2IYK@ò
ÜgÚ`W`EY?DKoÚ`Ü�EOW`[�Úp=@[kK3ÚpWVEOKFÜ¼AUE�Ú`[kP�P�Û@W`?DKQZ(E^ÚpWVEOKFÜgêíILWpMHE�Ú`?DILK�C@WpI�T�[kÜ`Ü�IYKoÚpI&Úp=@[x<Jù�ä�é
	(Üp?DKQZ
E T2[�WpÚp?DûFTkE�Úp?BIYK!C@W`I�T2[kÜ`Ü�à6=@?UTV=�Ü¼[kCQEOWVE�Ú`[kÜ�Úp=Q[HÙY[�W`?DûFT�EOÚp?BIYKïÚp=QEOÚ3Úp=@[:Ü`E�êí[�ÚgN1W`[kðoÛ@?BWp[�ò
M,[kKoÚ`Ü,EOW`[0T2IYW`W`[kT�Ú3êíW`IYM Ú`=@[:ÙL[�W`?´ûFTkE�Ú`?DILKïÚ`=QE�Ú#Úp=@[kN!EYWp[:Wp[vEOAB?BÜp[kP!?BK�Úp=@[4C@W`IYC�ILÜp[kP
C@ABEOÚ¼êíILWpM à6?DABAxÞF[�Ú¼Úp[kW#=Q[�ABCÌÜ¼Û@CQCFILW¼Ú#TV=FEOK@ZL[Yé�Ø^=Q?BÜ#EOC@C@W`ILELTV=ñ?BÜ#T2IYMÅC@AB[�MÅ[kKLÚVEOW`N1Ú`I
Úp=@[���+ò������YùQG������Æ?BK@?DÚp?UE�Ú`?DÙL[ÿæ ��è+à6=@?UTV= ?BÜ:C@W`IbP@ÛQT2?BK@ZÌT2[kW¼Ú`?´û�T�E�Ú`?DILK ZYÛ@?UP@EOKFT2[êíILW
ãgä1å�é
Ø^=@[0T2ILKLÚ`Wp?BÞ@Û�Ú`?DILKQÜ3IYêJÚ`=@?BÜ.CQEOC�[�W#EOW`[ÅÚpI C@W`[kÜp[�KoÚ.EOK�EYC@C@W`ILEYTV=ïÚpI ÛFÜ¼?BK@Z��3G��>ì

	(ä���EYKQP�ä1õ&åáêíIYW6ãgäÆåýP�[�ÙL[�ABIYC@MÅ[�KoÚvé��ï[�P@?BÜ`T2ÛQÜ`ÜxÚp=Q[�T2IYMÅC@AB[2ü�?DÚgN:EOKFP4W`[kðoÛ@?BW`[kP
Ü¼[kMÅEYKoÚp?UT�ÜJêíIYW^Ú`W`EYKQÜgêíILWpMÅ?BK@Z��3G��!T�IYKQÜ¼ÚpWVEO?BKoÚ`ÜJà6=@[�K�ÛQÜp?BK@Z,Úp=@?UÜ6EOC@CQWpIoEYTV=;ébØ^=@[3CQEOò
CF[kW3?BÜ�AUEO?UPÆILÛ�Ú�EYÜ+êíIYABADI�à&Ü���ûQWVÜgÚ�àJ[ÅP�?UÜpT�ÛQÜ`Ü�?DK!MÅIYW`[,P�[�Ú`EY?DA�Úp=Q[,ãgäÆå T2IYKFT2[�C@Ú�EYKQP
Úp=@[ÅW`[kðoÛ@?BWp[kM,[kKoÚ`Ü(êíIYW3ÜpEOêí[2ÚgN1EYKQPÆT�[�WpÚp?DûFT�EOÚp?BIYK;é��![#Ú`=@[�K!C@W`[kÜp[�KoÚ3E:Þ@W`?B[2ê¸I�ÙL[�W`Ùo?B[�à
ÚpISIYÛ@W3ä1õ&å�EOCQC@WpIoEYTV=1ÛFÜ¼?BK@Z�	+ä�� EOKQP �3G��>é�å�Ü¼MHEOABAXT�ELÜ¼[ÅÜgÚ`ÛQP�N ?UÜ+Úp=@[kKïZL?DÙL[�K
P�[�MÅIYKFÜgÚ`W`EOÚp?BK@Z:=@I�à Úp=@[vÜ¼[ÅT2ILKQÜgÚ`W`EY?DKoÚVÜ(MHEzN Þ�[ÅP@[�W`?DÙL[kP1EYKQP1?BKQÜp[�WpÚp[kPÆ?DKoÚ`ISES<>ãgä�é
�ï[&Üp=@I�àÿ=QI�àÿÚ`=@[kÜp[6T2IYKFÜgÚ`W`EY?DKoÚ`ÜXEYWp[6T�IYKbÙY[kW¼Ú`[kP.P@Û@Wp?BK@Z�Ú`=@[^ÚpWVEOKQÜ¼êíIYW`MHE�Ú`?DILK.C@W`I�T2[kÜ`Üké
!�?BKQEYADABNYì@àx[3P�?UÜpT�ÛQÜpÜxÚ`=@[3C�IOÚp[kKoÚp?UEOA;Þ�[�K@[�û@Ú`Ü(EOKQP4AD?BMÅ?´ÚVE�Ú`?DILKQÜ6IOê�IYÛ@W&EYC@C@W`ILELTV=;é
Ø^=@[¸CQEYCF[kW�EYÛ�Úp=@ILW`Ü�EOW`[>CQEYW¼Ú�IOê�Úp=Q[#"&?BZY=.ãeKLÚ`[�ZLWp?DÚgN�R&[kEOAbØ^?BM,[^ùbN�ÜgÚ`[�MHÜxÝ$"&ãgR�Ø&ù@ß

õ([�êí[�KQT�[�EYKQPHå&[kWpIoÜ¼CQELT2[(R&[kÜp[kEOWVTV=H<XEOWpÚpK@[kW`Üp=@?BC Ý¡õ&å+R&<Jß¸C@W`IYZYWVEOM ?DK0Úp=@[%	�é &ÅéoEYKQP
EOW`[.ABIoILâb?DK@ZSE�Ú�ÛQÜ¼?BK@Z�P�?('�[kWp[kKLÚ3ÜpIOêËÚgà^EOW`[�MÅIbP@[�ABAD?BK@Z4Úp[kTV=QK@?BðoÛ@[vÜ&Ú`ISÜpÛ@C@C�IYWpÚ%"(ãgR�Ø&ù
Ü¼N�Ü¼Úp[�M P�[vÜ¼?BZYKÆEYKQP T2[kW¼Ú`?´û�T�E�Ú`?DILK;éFØ^=Q?BÜ+Wp[vÜ¼[vEOWVTV=4?UÜ)�gIY?BKLÚ`ADN4êíÛ@KQP@[kP1ÞbN4Úp=@[+*¸<xù�R&G+ì
	,&�õ+Ø^ã�ì.-^å/* ù10�ù�Ø2*JäÆù�ì43+?BK@[2Ú`?53 EOKQP�R6ILADAUÜ6R6I�N�T2[Lé

6 7�8:9<;�Ñ�=>8XÐ(Ô�ÏoÐJÑ1;@?>Ò�8�Ñ�;mÔBA Ó6Ô(Õ,CD8�ÒFEHG&×¼Ó¸Ð(×pÖJI
KJLNM O@P�QSR�TVUXWZY\[]T�[N^�P�_2O`U`abT
R�cda�P�e:fXghe:^�Y\R1ciR1e�T�P._�W�j:P�elk4R
ù�E�êí[�ÚgN#?UÜ¸EYKH[�MÅ[�W`ZY[kKLÚxÜ¼N�Ü¼Úp[�M�C@W`IYC�[�WpÚgN4æDç��Oè»éYØ^=Q?BÜJMÅ[kEOKFÜXÚp=Q[(T2ILM.Þ@?BK@[kPÅÞ�[�=FEzÙo?BIYÛQW
IOê�?DKQP@?DÙb?UP�ÛQEOA�T2ILM,C�IYKQ[�KoÚ`ÜHT�IYKoÚpW`?DÞQÛ�Úp[�Ú`I�Úp=@[1Ü`E�êí[�ÚgNÿIYê+Ú`=@[ÆÜpNbÜ¼Úp[kM Ú`=@[�NîEOW`[?DK;é
Ø^=@[�W`[3EOW`[�KbÛ@MÅ[kWpILÛQÜ^P�?m'�[�W`[�KoÚ6Ú`[kTV=@K@?UðoÛ@[kÜxêíILW&Ü¼N�Ü¼Úp[kMÉÜpEOêí[2ÚgN:EYKQEOABN�Ü¼?UÜx=@I�àx[�ÙY[kWkìoêíILW
Úp=@[�C@Û@W`C�ILÜp[kÜJIOê;Ú`=@?BÜ^CFEOC�[�W^àJ[�=QEzÙL[+ÜpÛ@MÅMÅEYWp?UÜp[kPÅÚ`=@[kÜp[�EYKQP0CQWpI�P�ÛQT�[kP4E#Üp[2Ú^IOê�âY[�N
P�[2ûQKQ?´Ú`?DILKQÜbn
oqp P�r�P�Ysfutve:P�_]U`a
[$a òH?BKZY[kK@[�WVEOA»ì^Ü¼ILM,[ïêíIYW`M IOê,Ü¼N�Ü¼Úp[�M =FE�wkEYW`PEOKQEYADN�Üp?BÜ4?BÜÛ@KQP�[kW¼ÚVEOâL[�K;émØ^=Q?BÜ.?BP�[kKoÚp?DûQ[kÜ#Ü¼N�Ü¼Úp[�M Ü¼Ú`E�Ú`[kÜ3à6=Q?BTV=ÌT�IYÛ@AUPñAD[vEYPïÚpIïEOK�EYTkT2?UP�[�KoÚkì
[Yé ZQé�Þ@WVEOâL[kÜ^EOW`[�K@IYK@ò»ILCF[kW`EOÚp?BIYKQEYAF?BK EHT�EOWvé

oqx P�[N_$ylY\Rvtve:P�_$U`a�[Na òmê¡EY?DABÛ@W`[(EOKFEOABNbÜp[kÜ>ADIbIYâ.êíIYWJCFIYÚp[�KoÚ`?BEYA@ê¡EO?BABÛ@Wp[vÜ>ILW>ÞF[k=QEzÙb?DILÛ@WVÜ?DK1ÜpN�ÜgÚ`[�M T2IYMÅC�IYK@[kKoÚ`Ü6à6=@?UTV= T2ILÛ@ABPSAB[kELP:Ú`I0IYKQ[3IOê�Úp=@[�=FE�wkEYW`P@IYÛQÜ^Ü¼Ú`E�Ú`[kÜkì@[Yé ZQé
Þ@WVEOâY[�T�EYÞ@AB[�ÞQWp[vEOâ�Ü�é�Ø^=@[kN4EYABÜpI#ABIbIYâHêíILW&T2ILM.Þ@?BKQE�Ú`?DILKQÜxIOê�ê¡EO?BADÛ@W`[kÜ6EYMÅIYK@ZHT2ILM,ò
CFILK@[�KoÚVÜ�é

oqz R�Y\[]{4R1f|O`P�QSR�T<U~}vR1�Jyl[$Y\R�cdR�e�T
a/� z O@}va\� òFILK@[>IYêLÚ`=@[¸W`[kÜpÛ@ADÚ`Ü�IYêoÚ`=@[JEYKQEOABN�Ü¼[vÜEOW`[+E,Ü¼[�ÚxIYê�P�[kWp?BÙY[vP0W`[kðoÛ@?BWp[kM,[kKoÚ`ÜJIYK0Ú`=@[�T2IYMÅC�IYK@[kKoÚ`Üxà6=@?UTV=:MÅ?´Ú`?DZoE�Ú`[�EYZLEO?BKQÜ¼Ú
Úp=@[3W`[�AB[�Ù�EYKLÚ^ê¡EY?DABÛ@W`[kÜkì�[Yé ZQébÚp=Q?BTVâL[�W6Þ@WVEOâL[�TkEOÞ@AB[Yé

o O`P.Q�R�T<U�W�P�a
R ò�E+ÜpEOêí[2ÚgN3T�ELÜ¼[JC@W`[kÜp[�KoÚ`Ü�E(ÜpN�ÜgÚ`[�MHE�Ú`?BTxEOW`ZYÛ@MÅ[kKLÚmÚp=QEOÚ�Ú`=@[J=FE�wkEYW`PQÜ=QEzÙY[¸ÞF[k[�K.ÜpÛ�þ0T2?B[�KoÚpABN3EYP@P@Wp[vÜpÜp[kPÅÝ¡P@[�C�[�KQP�?BK@Z�IYK�Ú`=@[¸W`[kðoÛ@?BWp[vP�?DKoÚ`[�ZYW`?DÚgN�ß�ÞQEYTVâL[kP
Û@C�à6?´Ú`=�[�Ùb?BP@[�KQT�[�êíWpILMÉEOKQEYADN�Üp?BÜ^EYKQP4Úp[kÜ¼Úp?BK@Z æ��vè¨é

14

KJL5K ghe�T
R1k.Y\P�T
R�f��q�`fly:_$P�Y�t�{`[$�4e:[$^�a��Dgh��t��
ãgä1åî?BÜ�Ú`=@[^Úp[kWpMýÛQÜp[kP.ÚpI3P�[vÜpT�Wp?BÞ�[^E�P�?UÜgÚ`Wp?BÞ@Û�Ú`[kPÅT2ILMÅC@Û�Úp[kW�C@ABEOÚ¼êíILWpM ILK,EYK#EY?DWVT2WVE�êËÚvé
Ø^=@?BÜ�CQEOC�[�W.T�IYKQT�[�KoÚpWVE�Ú`[kÜ�ILKïÚ`=@[:T�?DÙb?BA¸ãgä1å Ü¼Ú`EYKQP@EOWVPñå(R6ãgó�G������ñæDç2è¨émØ^=@[0ãgäÆå
T2IYKFT2[�C@Ú,=QELÜ.Þ�[�[kKÿ?BKoÚpW`IbP@ÛQT2[vP�ÚpIï=@[�ABCî?DMÅC@W`I�ÙY[0MHEY?DKoÚ`EY?DKFEOÞ@?BAD?DÚgNñIOê+ÜpN�ÜgÚ`[�MHÜkì�EYKQP
T2IYM#ÞQE�Ú6ABIYK@Z,Ú`[�W`M C@W`IYÞ@AB[�MHÜ6ÜpÛQTV=SELÜ^=QEOWVP�à^EOW`[+ILÞQÜpIYAB[kÜ`T2[�KFT2[Yé
å&KÆãgäÆåôK@[�ÚgàJILWpâ�T2ILKQÜp?BÜ¼Ú`Ü(IOêJE:KoÛQM.Þ�[�W�IOêJT�IYMÅC@Û�Ú`[�W�C@WpI�T�[kÜ`Ü¼ILW&MÅIbP@Û@AD[vÜ�T2IYK@ò

K@[kT2Úp[kP4ÞbN:EÅT2ILM,MÅILK4T2ILMÅM.Û@K@?UT�EOÚp?BIYKQÜxK@[�ÚgàJILWpâHà6=Q?BTV=SAD?BK@â�ÜxÚpIHE#KbÛ@M.Þ�[�W6IYê�P�[vP�?´ò
T�E�Ú`[kP�Üp[�KQÜpIYW&EYKQP�EYT�Ú`ÛQE�Ú`IYW&P�[kÙb?BT�[kÜké.*¸ELTV=ST�IYMÅC@Û�Ú`[�W&MÅI�P�Û@AB[�=QELÜ&E,Úp=@W`[�[3AUEzNY[kW6EOWpò
TV=@?´Ú`[kT2ÚpÛ@W`[JIYê�EYC@C@AB?BTkE�Úp?BIYKFÜ�ì��+CF[kW`EOÚp?BK@Z3ùbN�ÜgÚ`[�M Ý���ùQß�EYKQP+"(EOWVP�à^EOW`[>ãeKoÚp[kW¼ê¡ELT2[��mEzNY[kW
Ý$"&ã���ß�éLù�IOêËÚgà^EOW`[J?BK,Úp=@[6EOCQC@AD?UT�EOÚp?BIYK,ABEzNL[�W�?UÜXP�?DÙb?UP�[kP,?BKoÚpI�CQEOWpÚp?DÚp?BIYKFÜ�é*¸ELTV=.CQEYW¼Ú`?´Ú`?DILK
?BÜ3Üp[�CQEYW`EOÚp[vP�êíWpILM�IOÚ`=@[�W�CQEYW¼Ú`?´Ú`?DILKQÜ�ADILZY?UT�EYADABNÌÝËÚ`=@[�NÆP@ISKQIOÚ3=QEzÙY[,EOKbNÆÜp=QEOW`[kPÆP@E�ÚVE
EOW`[kEYÜVßxEOKQP:Úp[kMÅCFILW`EYADABNïÝ¡[kEYTV=S?UÜ6[2ü�[kT�Û�Úp[vP�Ü¼[vðLÛQ[�KoÚp?UEOABADN:?DK EÅW`IYÛ@KQP�ò»W`IYÞ@?BK:MHEYK@K@[�W�ß�é
å(T�T�[kÜ`Ü�Ú`IÆÚ`=@[�T2IYMÅM#Û@K@?UT�E�Ú`?DILKQÜ�KQ[2ÚgàxIYW`âï?UÜÅEOAUÜ¼IÆÜ¼ÚpW`?UT�ÚpABN�CQEYW¼Ú`?´Ú`?DILK@[kP�ÞbN!Úp=Q[~��ù�é
Ø^=@[HEOC@C@AB?UT�E�Ú`?DILKQÜ�T�EYKÆIYKQADN1W`[kðoÛ@[vÜgÚ3EYTkT2[vÜpÜ+ÚpIS=QEYW`P�à^EOW`[#P@[�Ùb?BT�[kÜ�EOKFPÆIYÚp=@[kW�EYC@C@AB?´ò
T�E�Ú`?DILKQÜ6Ùb?UEHEOK1å&CQC@AD?UT�EOÚp?BIYK1<¸WpILZYWVEOMÅMÅ?DK@Z,ãeKoÚp[kW¼ê¡ELT2[0Ý¡å+<>ã¼ß2é�-xN4ÛFÜ¼?BK@Z0EOK1å+<>ãxÚp=Q[
EOC@C@AB?UT�E�Ú`?DILK,T�I�P�[^?BÜXKQIOÚ�Úp?B[kP,Ú`I�EYKbN�CQEOWpÚp?UT2ÛQABEYW�=FEOWVP�àxEYWp[xC@AUE�ÚpêíIYW`MSéOØ^=Q[/��ù�?BK,ÚpÛ@W`K
ÛQÜ¼[vÜ6Ú`=@[Z"&ã��ÌÙo?UE0EYK�å+<>ã�é�å&ZLEY?DK�Ú`=@?UÜ&?UÜ6ÚpI4Ü¼Û@CQCFILW¼Ú(C�IYWpÚ`EYÞ@?BAD?DÚgNYì�Ú`=@?UÜ&Ú`?DMÅ[3êíILW&Úp=Q[
��ù�é
	(Üp?DK@Z�Úp=@?UÜJEYW`TV=Q?´Ú`[kT�Ú`Û@W`[6=QEYÜJE3KbÛ@M.Þ�[�WxIOê�C�IOÚp[kKoÚp?UEOA�ÞF[kK@[2û@ÚVÜ¸?BKQT�ADÛQP@?DK@Z.Úp=@[+EOÞ@?BA´ò

?´ÚgN�Ú`I4W`[kT�IYK�ûQZLÛ@W`[�êíIYABABI�à6?DK@ZSE0ê¡EY?DABÛ@W`[Yì�ÚpISW`[kÜ¼ÚpW`?BT2Ú(Úp=Q[,?BMÅCQEYT2Ú�IYêJESTV=QEOK@ZL[#EYKQP Ú`I
Û@C@ZYWVEYP@[3Úp=@[,=QEYW`P�à^EOW`[3à6?DÚp=1MÅ?BK@?DMHEYA�?BMÅCQEYT2Ú+ILK Úp=@[,EOC@CQAD?UT�EOÚp?BIYKQÜké4"(I�àJ[kÙY[kWkìQT�Û@Wpò
Wp[kKLÚxT2[�WpÚp?DûFTkE�Úp?BIYKÅC@WVEYT2Úp?UT2[LìYà6=@?UTV=H[2ü@EOMÅ?BK@[kÜ¸Ü¼IYêËÚgàxEYWp[&ELÜ>E3MÅIYK@ILAD?DÚp=mìY?UÜ>K@IYÚ>ëQ[2ü�?BÞ@AB[
[�K@ILÛ@ZY=ÁÚpI�[vEYÜp?DABNÁÜpÛ@C@C�IYWpÚÅÚp=@[vÜ¼[1Þ�[�KQ[2û@ÚVÜ�é¸å�KoÛQM.Þ�[�WHIOê�?BK@?´Ú`?BEOÚp?BÙY[vÜ0EOW`[�?DK C@AUEYT�[
ADIbIYâb?BK@Z:EOÚ(C@W`IbP@ÛQT2?BK@Z0K@[kàýZYÛ@?UP@EYKQT2[3Ú`I0Þ�[2Ú¼Ú`[�W�Ü¼ÛQC@CFILW¼Ú�?DKFT2W`[�MÅ[�KoÚ`EYA�TV=QEYK@ZY[LìQÜpÛQTV=
EYÜXÚ`=@[%�F+ò����3àxIYW`âb?DKQZ3ZYW`IYÛ@C1æ �zè¨éLØ^=@?UÜJàJILWpâb?BK@Z�ZYW`IYÛQC,?UÜJC@WpI�P�ÛFT2?BK@Z#E�P@W`EOêËÚJà6=@?UTV=
Wp[vT2IYMÅMÅ[�KFP@Ü3ÛQÜp?DKQZ1E ÜgÚVEOZY[vP!C@WpI�T�[kÜ`Ü�êíIYW.?BKoÚp[kZYWVE�Úp?BK@Z EOCQC@AD?UT�EOÚp?BIYKQÜ�à6?DÚp=ÌÚp=@[0ãgäÆå
C@ABEOÚ¼êíILWpM�émØ^=@[4EOÛ�Ú`=@IYWVÜ3Þ�[�AB?D[kÙY[0EOK�ä1õ(åÉEOCQC@WpIoEYTV=ïà6?DABAJT�IYMÅC@AB[�MÅ[�KoÚ�Ú`=@?BÜ#ÜgÚVEOZL[kP
?DKoÚp[kZYWVE�Ú`?DILK,EYKQP,Úp=QEOÚ>Úp=Q[&ÛQÜp[&IOê�MÅIbP@[�ABAD?BK@Z.TkEOKÅC@W`I�Ùo?UP�[&Üp?DZLK@?DûFT�EYKLÚ>Þ�[�KQ[2û@ÚVÜXÚpI.=@[�ABC
Úp=@[�TV=QEYK@ZY[�C@W`I�T2[kÜ`Üké

� A Ó6Ô,;@C��ÃÒQ×�G);mÐ�E ÒQÖ.�+×eÑ�;mÖ�Ñ@Õ&Ò�;

Ø^=@[.ä I�P�[kAmõ(W`?BÙY[�K å(W`TV=@?DÚp[vT�Ú`Û@Wp[0Ý}ä1õ&å�ß�æ öQì¼÷Oè�EOC@CQWpIoEYTV=SC@Û�Ú&êíILWpà^EOWVP:ÞbN:Úp=@[+�+Þ@ò
�g[kT�Úxä1EOKQEYZY[kM,[kKoÚ��W`IYÛQCSÝS��ä|3ß�C@W`IYC�ILÜp[kÜ�Ú`=@[6ÛQÜp[6IOê�ÚgàJI3ÜpNbÜ¼Úp[kMôMÅI�P�[�AUÜ&Ý¡ÛQÜ¼ÛFEOABADN
T�EOC@ÚpÛ@W`[kP#à6?´Ú`=�	(ä���ß�ìYILK@[6<>AUE�ÚpêíIYW`MýãeKQP�[�C�[�KFP�[�KoÚJä I�P�[kAmÝ¡<¸ãgäÆß�EOKQP,ILK@[6<>AUE�Ú¼êíILWpM
ùbCF[vT2?DûFT&ä I�P�[kAmÝ¡<xù�äÆß2éLØ^=@[(<¸ãgä T2IYKoÚVEO?BKQÜXP�[2ÚVEO?BABÜ>IOê�Úp=@[6W`[kðoÛ@?BW`[kPÅT2ILWp[xêíÛ@KQT2Úp?BIYKQEYA´ò
?´ÚgN0IYê�Ú`=@[3Ü¼N�Ü¼Úp[kMSéFØ^=@?BÜ^?UÜxÚp=Q[�K�MHEOC@C�[kPSIYW^MÅ[�W`ZY[vP:à6?DÚp= E,MÅI�P�[�A�IYê�Ú`=@[�C@ABEOÚ¼êíILWpM
ÚpI�C@W`IbP@ÛQT2[#Úp=@[H<xù�ä�é;Ø^=@[,Úp[kWpM8C@ABEOÚ¼êíILWpM�W`[2êí[kW`Ü+ÚpI4Úp=Q[0Ü¼Û@CQCFILW¼Ú`?DK@ZS[�KbÙb?BWpILK@MÅ[�KoÚ
[Yé ZQéLG2��R�-^å IYW)��ù#EOKQP,=QEYW`P@àxEYWp[LévØ^=@?UÜ>Üp[�CQEYW`EOÚp?BIYK#MÅEOÚ`TV=@[vÜ�Úp=QEOÚ>ÛQÜp[kP#?DKÅãgä1å.éOãeK
ãgä1å Úp[kWpMHÜ&Úp=@[.<¸ãgä à6?DABA�T�IYKoÚ`EY?DK�MÅI�P�[�AUÜ&IYê>P�[kP�?UT�EOÚp[vP EzÙo?BIYKQ?BTkÜ6EOC@C@AB?UT�E�Ú`?DILKQÜ&EYKQP
Úp=@[k?DW+Wp[kABEOÚp[kP�=FEOWVP�àxEYWp[3P�[kÙb?BT�[kÜ(ÜpÛQTV=1ELÜ(Üp[�KQÜpIYWVÜ&EOKFP EYT�Ú`ÛQE�Ú`IYWVÜ&EOKFPSÚp=@[,<Jù�ä à6?BADA
M,I�P�[kA�=@I�à/Ú`=@[kÜp[�?DKoÚ`[�WVEYT�Ú6à6?DÚp=4Úp=@[3ãgäÆå ÞFEOW`[�CQABEOÚ¼êíIYW`M�ìbà6=@?DAUÜ¼Ú(ÜgÚ`?DABA�Wp[�Ú`EY?DK@?BK@Z,Úp=Q[
êíÛ@KQT�Ú`?DILKQEOA�C@W`IYC�[�WpÚp?B[kÜ¸IOê;Ú`=@[�<>ãgä�ébåMÅI�P�[kA�IYê�Úp=@[�ãgä1å C@AUE�Ú¼êíILWpMúà6?BADA�Þ�[+W`[kðoÛ@?BW`[kP
EYÜ&CFEOWpÚ+IOêXÚ`=@[.MÅ[kWpZL?DK@Z:C@WpI�T�[kÜ`Ü&à6=@?UTV=ÆT2ILKoÚ`EO?BKQÜ+P�[2ÚVEO?BABÜ�Ü¼ÛFTV=ÆEYÜ(CF[kW¼êíILWpMHEOKFT2[.EYKQP
EzÙzEY?DAUEOÞQAD[�Wp[vÜ¼ILÛ@WVT2[kÜké

15

Ø^=@[ïÜ`E�êí[�ÚgNîTkEYÜp[1êíIYWSEOK/ãgäÆå�ÜpN�ÜgÚ`[�M P�[�ÙL[�ABIYC�[kPÃà6?DÚp=áä1õ&å�àxIYÛQABPÃÞ�[ñT2IYK@ò
ÜgÚ`WpÛQT2Úp[vP4ELÜ¸êíILADABI�à&Üké1!�?BW`Ü¼Úkì�ÞbN0C�[�WpêíIYW`MÅ?DKQZ#=QE�wkEYW`P4EOKQEYADN�Üp?BÜxEOKQP:ê¡EO?BABÛ@Wp[3EYKQEOABN�Ü¼?UÜ¸ILK
Úp=@[�<>ãgä�ìXP�[kWp?BÙY[vP�W`[kðoÛ@?BWp[kM,[kKoÚ`Ü,T�EOKÁÞF[SZY[kK@[�WVE�Ú`[kP�é�Ø^=@[vÜ¼[�P�[�W`?BÙY[kPÌWp[vðLÛQ?DW`[�MÅ[�KoÚVÜ
EOW`[0T�EOC@ÚpÛ@W`[kP!à6?DÚp=@?BKñÚp=@[S<>ãgä�é�Ø^=@?BÜ.=@[�ABCQÜ#P�[�MÅIYKFÜgÚ`W`EOÚp[,Úp=QEOÚ�Úp=Q[:?UP�[�KoÚp?DûQ[vPñ=QE�w�ò
EOWVP@Ü�=QEzÙY[xÞ�[�[�KHELP@P�W`[kÜ`Ü¼[vP�é�Ø^=@[�K,Úp=Q[&<>ãgäø?BÜ�MÅ[�W`ZY[vP.à6?DÚp=,Ú`=@[&<Jù�äÌéYåîÙY[�W`?DûFT�EOÚp?BIYK
C@WpI�T�[kÜ`Ü3T�EOKñÞ�[HÛQÜp[kPïÚpI1P�[kMÅIYKQÜ¼ÚpWVE�Ú`[ÅÚp=QEOÚ3Úp=@[:Ü`E�êí[�ÚgN1W`[kðoÛ@?BWp[kM,[kKoÚ`Ü3EOW`[HÜgÚ`?DABA¸MÅ[�Ú
IYKQT�[&Úp=Q[�EYC@C@AB?BTkE�Ú`?DILKQÜJEYWp[+[�M#ÞF[vP@P�[kP:IYKoÚpI.Úp=@[�ãgä1åáC@AUE�ÚpêíIYW`MSéoãeK4ELP@P�?DÚp?BIYK:ÚpI#Úp=@?UÜ�ì
[�Ùb?BP@[�KQT�[JàxIYÛ@AUP3Þ�[JW`[kðoÛ@?BW`[kP�Ú`=QE�Ú�Úp=@[xûQKFEOAb?DMÅC@AB[�MÅ[kKLÚVE�Ú`?DILK3êíÛ@ADûQABÜ�Ú`=@[xWp[vðLÛQ?DW`[�MÅ[�KoÚVÜ
ABEY?BP4IYÛ�Ú&?BKSÚp=@[3MÅI�P�[kA}é
ã¨êJE4TV=FEOK@ZL[�?BÜ�MHEYP@[.Ú`I4ILK@[#IYê>Úp=Q[,P�[vP�?UT�E�Ú`[kPïEOC@C@AB?UT�E�Ú`?DILKQÜ(Úp=@[kKÆÚ`=@[,<¸ãgä à6?BADA

ÞF[(EYA´Ú`[�W`[kP.ÚpI�W`[2ëF[kT�ÚXÚ`=QE�Ú¸TV=FEOK@ZL[YéOå(PQP�?´Ú`?DILKQEOA�ÜpEOêí[2ÚgN,EOKQEYADN�Üp?BÜ�MHEzN�Þ�[&W`[kðoÛ@?BWp[vP#EYKQP
K@[�à ÜpEOêí[2ÚgN�W`[kðoÛ@?BW`[�MÅ[�KoÚ`ÜXTkEOC�Ú`Û@W`[kP#?DKÅÚ`=@[6MÅIbP@[�A»éYØ^=@[&<>ãgäøà6?BADA�Ú`=@[�KHÞ�[6MÅ[�W`ZY[vP�Ú`I
êíIYW`MÉE#<xù�ä EOKQP4Wp[�ò»ÙL[�W`?´û�T�E�Ú`?DILK0Û@KQP@[�WpÚ`EOâL[�K;é�Ø^=@?UÜ^W`[�C@W`[kÜp[�KoÚ`Ü^E,Ü¼?BZYKQ?´ûFTkEOKoÚ6ÜpEzÙb?BK@Z
?DKSÚp?BMÅ[�EOKQP4[h'�IYWpÚ6ÚpIHT�Û@WpW`[�KoÚ6C@WVEYT2Úp?UT2[3EYÜ^ILK@ADN0Úp=@[�<¸ãgä8K@[k[kP@Ü6ÚpIÅÞF[3W`[2òeEOKFEOABNbÜp[kP;é
ã¨êXÚp=@[,ãgä1å CQABEOÚ¼êíIYW`M ?BÜ�EOADÚp[kWp[vPÌÝí[Lé ZFéQÚ`I:Û@CQZYWVEYP�[3Ú`=@[.CQWpI�T2[vÜpÜpIYW�ßJÚp=Q[�KÆILK@ABNS?DÚ`Ü

M,I�P�[kA>K@[k[kP@Ü�Ú`I�ÞF[0ÛQC�P@EOÚp[vP!EYKQPïÚp=@[0<¸ãgä W`[�MHEY?DKQÜ�Ú`=@[:Ü`EOMÅ[Yé;Ø^=Q[�K;ì;W`[2ò¨MÅ[�W`ZY?BK@Z
EOKQP:Wp[�ò»ÙL[�W`?´ûFTkE�Ú`?DILKHà6?DABA�Ú`EYâY[�C@ABELT2[+ÚpIÅP�[�MÅILKQÜgÚ`W`EOÚp[+Úp=QEOÚ^Úp=@[�W`[kðoÛ@?BWp[vP0ÜpEOêí[2ÚgNHC@W`IYC@ò
[�WpÚp?B[kÜXEOW`[6ÜgÚ`?DABA@MÅ[2ÚvéYå&ZoEO?BK;ìzÚp=Q?BÜXàxIYÛQABP#MÅ[kEOKHE�Üp?DZLK@?´û�T�EOKoÚX?BM,CQWpI�ÙL[�MÅ[�KoÚ�IYKHT2Û@W`W`[�KoÚ
C@W`ELT�Ú`?BT�[Yé
ØmI�ÜpÛ@C@C�IYWpÚHÚp=@?UÜ0C@W`I�T2[vÜpÜ#Úp=Q[ÆEOÛ�Ú`=@IYWVÜÅC@W`IYC�ILÜp[�ÛQÜ¼?BK@Z!Úp=Q[|	(ä��áÚ`I�Wp[kC@W`[kÜp[�KoÚ

Úp=@[�Ù�EOW`?DILÛQÜ¸ÜpN�ÜgÚ`[�M T2ILM,C�IYKQ[�KoÚ`ÜJEOKQPÅÚ`=@[�?BWx?DKoÚp[kW`ELT�Ú`?DILKQÜ�éoØ^=@[�	(ä��ÆM,I�P�[kABÜxEOW`[([�übò
Úp[�KFP�[kP#à6?´Ú`=,Ü`E�êí[�ÚgN�W`[kðoÛ@?BWp[kM,[kKoÚ`Ü�T�EOC@ÚpÛ@W`[kP.ÛQÜ¼?BK@Z�Úp=Q[��+Þ��g[kT�Ú¸GJIYKFÜgÚ`W`EY?DKoÚ��mEOKQZYÛQEYZY[
Ý��3G���ß&æ´çköOè¨éYãeKHIYÛQW¸[2ü�C�[�W`?D[kKQT2[+ÜpEOêí[2ÚgN.?UÜ¸E�?DK@=Q[�W`[�KoÚ¸CQEYW¼Ú¸IYê;E�ÜpEOêí[2ÚgNÅT2W`?´Ú`?BTkEOAQÜpN�ÜgÚ`[�M
EOKQP,T�EYK@K@IOÚXÞ�[&Ü¼[kCQEOWVE�Ú`[kP�êíWpILMýÚp=@[&T�IYW`[¸êíÛQKQT�Ú`?DILKQEOAB?´ÚgNLìO=@[kKQT2[^àx[^TkEOC�Ú`Û@W`[JÚ`=@[&Ü`E�êí[2ÚgN
Wp[vðLÛQ?DW`[�MÅ[�KoÚVÜJà6?DÚp=Q?DK�Ú`=@[3MHEO?BKSÜpN�ÜgÚ`[�MÉMÅI�P�[kA}é

�`LNM ��a�[Nelk ������P�e:f��vW��
Ø^=@?BÜ6Üp[kT2Úp?BIYK4C@Wp[vÜ¼[kKoÚ`Ü^EOK�ä1õ&å EOCQC@WpIoEYTV=HêíILWxÚp=@[3P�[kÙY[�ABIYCQM,[kKoÚxIYê�E,ÜpEOêí[2ÚgN:T�Wp?DÚp?UT�EYA
EOC@C@AB?UT�E�Ú`?DILK�à6=@?UTV=�?BÜ.ÚpI1Þ�[:[kM.Þ�[kP@P@[kP�ILKÌEOK�ãgä1åÉK@[2ÚgàxIYW`â�émØ^=@[4EYC@C@W`ILELTV=ïÛQÜp[kÜ
ÞFIYÚp=CQABEOÚ¼êíIYW`M Ü¼C�[kT�?´û�TïEYKQPÃC@AUE�ÚpêíIYW`M ?BKQP�[kCF[kKQP�[kKLÚ�MÅI�P�[�AUÜ:IYê�Úp=Q[!ÜpN�ÜgÚ`[�M�éxØ^=Q[
<>ãgä1Ü6EYWp[�?DKFP�[�C�[�KQP@[�KoÚ&IOê�Úp=@[3C@W`I�T2[vÜpÜp?DKQZ#C@AUE�ÚpêíIYW`MÉEOKFP���ù�ì�ÞQÛ�Ú&MHEzN0ÞF[�Ú`?D[vP:Ú`IHE
Ü¼C�[kT�?´ûFT3EY?DWpêíWVEOMÅ[Yé�*JEYTV=4ÜpN�ÜgÚ`[�MøM,I�P�[kA;à6?BADAmT�IYKQÜp?UÜgÚ6IOêXE,KbÛ@M.Þ�[�W&IYê�P@?m'�[�W`[�KoÚ,	(ä|�
Ùo?B[�à&ÜÅIYê(Ú`=@[1Ü¼N�Ü¼Úp[kM à6=@?UTV= Üp=@I�àÉP@?m'�[�W`[�KoÚ:ÜpNbÜ¼Úp[kM TV=QEYW`ELT�Úp[kWp?UÜ¼Úp?UT�Üké�Ø^=@W`[�[�AB[�ÙL[�AUÜ
IOêJMÅI�P�[kADAB?DKQZ�EYWp[#C@W`IYC�ILÜp[kP�ì�IYKQ[,AB[�ÙL[�A�IOê^<>ãgä�ì�EYKQP1ÚgàxI�<Jù�ä�ì�Ú`ISÜpÛ@C@C�IYWpÚ�ÜgÚVEOZL[kP
P�[�ÙL[�ABIYC@MÅ[�KoÚ&EOKFP:?BKoÚp[�ZLW`EOÚp?BIYKSIOê�Úp=@[3ãgä1åýÜpN�ÜgÚ`[�M�é
Ø^=@[ÅûQWVÜgÚ�MÅI�P�[�A¸AD[kÙY[�A¸=QEYÜ�E <¸ãgä ÝíIYW#T2IYKFT2[�C@ÚpÛQEYA>AD[kÙY[kAXM,I�P�[kAUß�êíIYW3Ú`=@[:Ü`E�êí[2ÚgN

T2W`?´Ú`?BTkEOA�Ü¼N�Ü¼Úp[kM EOKQP:à6?DABA;T2ILKLÚVEO?BK:T2ILMÅCFILK@[�KoÚ`Ü^EYKQPHÚ`=@[�?BW6?DKoÚ`[�WVEYT�Ú`?DILKQÜkìoP�[kMÅIYKQÜ¼ÚpWVE�Úpò
?DK@Z!Ú`=@[T2IYW`[4êíÛ@KQT�Ú`?DILKQEOA(C@WpILCF[kW¼Ú`?D[vÜ,IOê(Ú`=@[Ü¼N�Ü¼Úp[kMSé>Ø^=Q?BÜHMÅI�P�[kA6à6?DABA6?DKFT2ABÛQP�[�Úp=Q[
Ü¼C�[kT�?BEYAD?UÜ¼[vP4T�IYMÅC�IYK@[kKLÚVÜ6à6=@?UTV= T2IYKoÚ`WpILA�EYKQPSMHEOK@?BC@Û@AUE�Ú`[�Ü¼N�Ü¼Úp[�MøP@E�ÚVE Ý¡ÜpÛQTV=SELÜ&EOC@ò
C@AD?UT�EOÚp?BIYK1ÜpIOêËÚgà^EOW`[vßxEOKFPSÚp=@[,Ü¼C�[kT�?BEYAD?UÜ¼[vP�T2IYMÅC�IYK@[kKoÚ`Ü&à6=Q?BTV=�Ú`=@[�N�T2ILKLÚ`WpILA¸Ý¡ÜpÛQTV=1ELÜ
Ü¼[kKQÜ¼ILW`ÜxEOKFP:EYT2ÚpÛQEOÚpILW`ÜVß�ébØ^=@[3<>ãgä�T�EOK4ÞF[�ÛQÜp[kP0ÚpIÅEOKQEYADN�Üp[&Ú`=@[3T2IYW`[+Ü`E�êí[�ÚgNHC@W`IYC�[�Wpò
Úp?B[kÜ^IOê�Úp=@[3ÜpN�ÜgÚ`[�M�ì�EOKQP4Ù�EOAB?BP@EOÚp[+Úp=QEOÚ6Úp=@[�C@W`IYC�ILÜp[kP:P�[kÜp?DZLK4à6?BABA�M,[k[2Ú^Úp=Q[�W`[kðoÛ@?BW`[kP
ÞF[k=QEzÙb?DILÛ@WmEOKFP�êíÛ@KQT2Úp?BIYKQEYAD?DÚgNYézØmI+T�EOC@ÚpÛ@W`[XÚp=Q?BÜ�ÞF[k=QEzÙb?DILÛ@WJÝ}EOKQP�IYÚp=@[kWmK@ILK�ò»êíÛ@KQT�Ú`?DILKQEOA
C@WpILCF[kW¼Ú`?D[vÜ3Ü¼ÛFTV=!ELÜ+?BKoÚp[kWpILCF[kW`EYÞ@?DAB?DÚgN�ß(Ú`=@[HMÅIbP@[�AXà6?BADA>ÛFÜ¼[Åàx[�ABA´òeP�[2ûFK@[kP!T2ILKQÜgÚ`W`EY?DKoÚVÜ
T�EOC@ÚpÛ@W`[kP.?DK��3G��>é�Ø^=@[6T2ILKQÜ¼ÚpWVEO?BKLÚVÜ�EYWp[JZY[kK@[�WVE�Ú`[kP�ÞbN3C�[�WpêíIYW`MÅ?DK@Z+ÚpWVEYP@?´Ú`?DILKQEOA�Ü`E�êí[2ÚgN

16

EOKQEYADN�Üp[kÜ6IYêXÚp=@[#C@WpILCFIoÜ¼[vP P�[kÜp?BZYK1EOKFP1T2ILKoÙL[�WpÚp?BK@Z0õ�ù�R�� Ü(?BKoÚpI��3G��¸é�*JEYTV=1T2ILMÅCFIYò
K@[�KoÚ�?BÜSW`[�C@W`[kÜp[�KoÚp[vPÃEYÜSEÁÜp?BK@ZYAB[ïT�ABELÜpÜ4à6?´Ú`=@?BK EH	(ä�� MÅIbP@[�A»é^Ø^=Q[!T�IYMÅCFILK@[�KoÚVÜ
[kEYTV=!=QEzÙL[,E�Ü¼Úp[�W`[�IYÚgNbCF[ÅIOêx[�?DÚp=@[kW+���~ �¡�¢b£�¤$¥<¢<¦�ÝËêíILW�Ü¼[kKQÜpIYWVÜ�EYKQPñEYT2ÚpÛQEOÚpIYWVÜVß&ILW
��§�¨�¨4©m¤$¥Vª�«N¤$¬��®� �¦ êíIYW&ÜpIOêËÚgà^EOW`[Yé�Ø^=@[kÜp[3ÜgÚ`[�W`[�IYÚgNoC�[kÜ6EYWp[�ÛQÜp[kP�P�Û@W`?BK@Z,Úp=@[�<¸ãgä�Ú`I
<Jù�ä8ÚpWVEOKQÜpAUE�Úp?BIYKSC@W`I�T2[kÜ`Üké
Ø^=@[:<Jù@ä à6?DABA¸?BKQT2ABÛQP�[:Úp=@[4T2IYMÅC�IYK@[kKoÚ`Ü3êíW`IYM�Úp=Q[:<>ãgä ?BKoÚp[�ZLW`EOÚp[vPïà6?DÚp=ÿZY[�K@ò

[�WVEOAB?BÜp[kPÌT�IYMÅC@Û�Ú`[�WÅÜ¼ÛQC@CFILW¼ÚÅT2ILM,C�IYKQ[�KoÚ`Ü,Ü¼ÛFTV=ÁEYÜ#IYC�[�WVE�Ú`?DKQZÆÜ¼N�Ü¼Úp[kMÅÜkì�C@WpI�T�[kÜ`Ü¼ILW`Ükì
K@[2ÚgàxIYW`âb?DK@Z3EYKQPÅÜ¼I�IYKméYØ^=@[&<Jù@äøà6?BABAFP�[kM,ILKQÜ¼ÚpWVE�Úp[^=@I�àÁÚp=Q[kÜp[&T2IYMÅC�IYK@[kKoÚ`ÜXà6?BADAQ?DK�ò
Úp[�WVEYT2ÚXà6?´Ú`=HIYK@[&EYK@IOÚ`=@[�WvéOØ^=@?UÜ>P�I�T2Û@MÅ[kKLÚ>CQWpILCFIoÜ¼[vÜmÚ`=@[&ÛQÜp[^IOê�ÚgàJI�AB[�ÙL[�AUÜXIOê�<Jù�äi�OE
P�?DÙb?UÜ¼?BIYK.ÞQEYÜp[kP�ILK3Úp=@[JÚgNbCF[vÜmIYê@C@W`IYC�[�WpÚp?B[kÜ;à6=Q?BTV=.TkEOK�Þ�[JEYKQEOABN�Ü¼[vP3E�Ú�[kEYTV=3AB[�ÙL[�A»évØ^=Q[
ûQW`Ü¼Ú�AD[kÙY[�A&Ý¡ÞF[k=QEzÙb?DILÛ@WVEOAËß6[2ü@EYM,?BK@[vÜ+=QI�àýÚp=@[H<¸ãgä ?BKLÚ`[�WVEYT2Ú`Ü�à6?´Ú`=!E4ZY[kK@[�W`?UT.MÅI�P�[�A
IOê�Úp=@[�Ü¼ÛQC@CFILW¼Ú`?DKQZ�[�KbÙb?DW`IYKQM,[kKoÚkìYà6=Q[�W`[kEYÜXÚp=@[�Ü¼[vT2IYKFP#AB[�ÙL[�A�Ý¡P�[kC@ADI�NbMÅ[�KoÚ�ßX[2ü@EYM,?BK@[vÜ
E,ÜpC�[kT2?DûFT�?BKQÜ¼Ú`EOKoÚ`?BEOÚp?BIYK:IYê�Ú`=QE�Ú6[kKoÙb?BWpILK@MÅ[�KoÚké@Ø^=Q[�W`[kELÜ¼ILKQÜJêíIYW^Ú`=@?BÜ6Üp[�CFEOWVE�Úp?BIYKSEOW`[
Úp=@W`[�[�êíIYAUP�é:!�?BW`Ü¼ÚpABNYì�P�Û@W`?BK@Z1Ú`=@[4P�[kÙY[kADILC@MÅ[�KoÚ#C@W`I�T2[vÜpÜ�Úp=@[���ù�EOKFPÌÜ¼ÛQC@CFILW¼Ú`?DKQZ1[�K�ò
Ùo?BW`IYK@MÅ[�KoÚ(MHEzNSÞF[,Ü¼?BM.ÛQABEOÚp[kP1à6=@?DAUÜ¼Ú(Úp=Q[#EYT2ÚpÛQEYAmC@ÛQW`TV=QELÜ¼[.IOê>=QEYW`P�à^EOW`[�?BÜ�P�[kABEzNL[kP
ÚpIÿEzÙLIY?UPÁILÞQÜpIYAB[kÜ`T2[�KFT2[1EYÜHê¡EOW4ELÜ0C�ILÜ`Ü¼?BÞ@AB[YéxØ^=@?BÜ:MÅ[kEOKFÜHÚp=FE�ÚSELT�Ú`ÛQEOA�P�[�C@ABI�NbMÅ[�KoÚ
?DK�êíILWpMHEOÚp?BIYKÌMHEzN�K@IYÚ,Þ�[SEzÙ�EY?DAUEOÞ@AB[0êíILW#MÅI�P�[kADAB?DKQZQé>ùb[kT�IYKQP@ADNLì�ÛFÜ¼?BK@ZïÚgàJIïAD[kÙY[�AUÜ#IOê
<Jù�ä EOABABI�à&Ü6EHÜ¼[kCQEOWVE�Ú`?DILK4IYê�T�IYKQT�[�W`KQÜxêíIYW(T�IYKQÜ¼ÚpWVEO?BKoÚ6M,I�P�[kADAB?BK@ZQéQåxÚ(Úp=@[�ûQWVÜ¼Ú&AD[kÙY[�A
ÞF[k=QEzÙb?DILÛ@W`EYA�CQWpILCF[kW¼Ú`?D[vÜ+TkEOKÆÞ�[,[2ü@EOMÅ?BK@[kP�ì�à6=@[kWp[vEYÜ�E�Ú�Úp=Q[,P�[kC@ABI�NoMÅ[kKLÚ�AB[�ÙY[kAXT2IYK@ò
ÜgÚ`W`EY?DKoÚ`ÜHêíIYW:KQIYK�ò»êíÛ@KQT2Úp?BIYKQEYA(C@W`IYC�[�WpÚp?B[kÜ0ÜpÛQTV=/ELÜ0C@W`I�T2[kÜ`ÜpIYWHAUEzNYIYÛ@Ú:EOKQP [�üb[vT2Û�Ú`?DILK
Úp?BM,[vÜ+TkEOK Þ�[.ÙL[�W`?´ûQ[vP�éFØ^=Q?BÜ�Ü¼[kCQEOWVE�Ú`?DILK�à6?DABA�ELÜpÜp?UÜgÚ(?BKQT�Wp[kM,[kKoÚ`EOA�TV=QEOKQZY[�EYÜkì@êíILW+[�übò
EOMÅC@AB[Yìz?´ê�E�C@WpI�T�[kÜ`Ü¼ILWm?UÜ�ÛQC@ZYWVEYP�[vP3Ú`=@[�K#Úp=@[6P�[kC@ABI�NoMÅ[kKLÚ�MÅI�P�[�A�Üp=@IYÛ@AUP�ILK@ABN�K@[�[vP3Ú`I
ÞF[6W`[2ò¨[2ü@EOMÅ?BK@[kP;és!�?BKQEOABABNYì�Ú`=@[6P�[�C@ABI�NbMÅ[�KoÚXAD[kÙY[�A�MHEzN�?BKQT�ADÛQP@[6M.Û@ADÚp?BC@AB[&EOC@C@AB?UT�E�Ú`?DILKQÜkì
à6=@[�W`[kELÜ¸Ú`=@[3Þ�[�=QEzÙb?BIYÛ@WVEOA�AB[�ÙY[kA;Ü¼=QIYÛ@AUPSIYK@ABN0?BKQT2ABÛQP�[3ILK@[3EOC@C@AB?UT�E�Ú`?DILKSEOÚ(E#Úp?BM,[Lé
Ø^àJI0ELÜ¼C�[kT2Ú`Ü6IYê�Ú`W`EYKQÜ¼êíIYW`MÅEOÚp?BIYKSêíW`IYM Ú`=@[#<¸ãgä IYKoÚpI0EHÞ�[�=FEzÙo?BIYÛQW`EYA;<Jù�ä =QEzÙL[

ÞF[k[�K/[�ü�EYMÅ?DK@[vPÃÜ¼Iñê¡EYWkì¸Úp=@[vÜ¼[!EOW`[1ÜgÚVE�Ú`?BT1Ü¼ÚpW`ÛQT2ÚpÛ@W`[ÆP�?UEOZLW`EYMÅÜ:EOKQPÃÜp[kðoÛ@[kKQT2[ÆP@?BEOò
ZYWVEOMHÜ�é\!QIYW�Úp=@?UÜXE�<>AUE�ÚpêíIYW`M õ([vÜpT�Wp?BC�Úp?BIYK,ä I�P�[�A;Ý}<¸õ�äÆß�=QELÜ�Þ�[�[kKÅC@WpI�P�ÛFT2[kP;é�ãeK.Ú`=@?BÜ
<¸õ�ä�ì�Úp=Q[Hãgä1å�C@ABEOÚ¼êíILWpM�?BÜ�MÅI�P�[�ABAB[kP!ÞbN ÚgàJI T�IYK@K@[vT�Ú`[kP!T2IYMÅC�IYK@[kKoÚ`Ükì`¯�°
±�²,³s´�µ
EOKQPv¶�·�¸�¹`º�»|¼�Ý¡Üp[�[(ûQZYÛ@W`[�çzß�ìLÚp=@[�ABEOÚ¼Ú`[�W¸W`[�CQWp[vÜ¼[kKLÚ`?DKQZ3Úp=@[+[�KoÚp?BW`[+ÜpÛ@C@C�IYWpÚp?BK@Z�[�AB[2ò
M,[kKoÚ`ÜJ?DK:E#Ü¼?BK@ZLAD[&CQWpI�T2[vÜpÜp?BK@Z�MÅI�P�Û@AB[Yé1	(ä��ïP�?BEYZYWVEOMHÜ>à6?DÚp=0Úp[�MÅC@AUE�Ú`[(C@AUEYT�[�=@ILABP@[�WVÜ
EOW`[(ÛQÜp[kPÅÚ`I#W`[�CQWp[vÜ¼[kKLÚJÚp=@[�T2ILMÅCFILK@[�KoÚ`ÜJ?BK0Úp=Q[�<xù�ä�é�Ø^=@?UÜJÜp?DMÅC@AB[�Wp[kC@Wp[vÜ¼[kKoÚ`E�Ú`?DILKH?BÜ
ÛQÜ¼[vPïELÜ�Úp=@?UÜ3?UÜ�à6=QE�Ú�?UÜ�Ùb?BÜp?BÞ@AD[,Ú`I1EOKñå&C@C@AB?UT�E�Ú`?DILK;é;Ø^=@?UÜ3?UÜ3EOKñEOÞQÜ¼ÚpWVEYT2Ú�W`[�CQWp[vÜ¼[kK�ò
Ú`E�Ú`?DILK�IYK@ABNYì�EOKQP!=QELÜ3ÚgàxI�êíÛ@KQT2Úp?BIYKQÜ.IYK@ABN!EOÚ�Úp=Q?BÜ�Úp?BM,[ïÝ¡T2AB[kEYWpABNïE1M,ILWp[0T�IYMÅC@AB[2Ú`[
M,I�P�[kA&àxIYÛ@AUPÿ=FEzÙY[�EYP@P�?DÚp?BIYKFEOA^êíÛ@KQT2Úp?BIYKQÜVß�éJØ^=@[~¯�°
±�²,³s´�µÁT�IYMÅC�IYK@[kKLÚHW`[�C@W`[kÜp[�KoÚVÜ
Úp=@[�T2ILM,M#Û@K@?UT�EOÚp?BIYKQÜ¸Þ@ÛQÜxEOKQP0Üpà6?DÚ`TV=@[vÜ�ébå&ZoEO?BK;ìYÚ`=@?UÜ¸?UÜ^EOK0EOÞFÜgÚ`W`ELT�ÚJW`[�CQWp[vÜ¼[kKLÚVE�Ú`?DILK;é
Ø^=@[kÜp[.ÚgàxI4T�IYMÅC�IYK@[kKLÚVÜ�EOW`[.?BKQÜ¼[kW¼Ú`[kPÆ?DK!ÞF[�ÚgàJ[k[�KÆÚp=@[Å<>ãgä T2IYMÅC�IYK@[kKoÚ`Ükì�à6?DÚp=ïÚp=Q[
¯�°
±�²,³s´�µÁT�IYMÅC�IYK@[kKLÚHÞ�[�?BK@ZÌE�ÚpÚ`ELTV=@[kPÿÚpI�EOABA6?DÚp[�MHÜÅMHEOW`âY[vPÌà6?DÚp=îÚp=Q[1ÜgÚ`[�W`[�IOÚgNbC�[
�d�� ½¡+¢h£
¤$¥<¢V¦ EOKFPñÚp=@[~¶�·�¸,¹`º�»|¼ Þ�[�?BK@Z!E�Ú¼ÚVEYTV=@[vPñÚpI!EOABA¸?DÚp[kMÅÜ,MHEOW`âY[vP!à6?´Ú`=
Úp=@[�Ü¼Úp[kWp[kIOÚgNbCF[Z�H§#¨�¨4©¾¤$¥<ª\«�¤$¬\.®# �¦Ãé

¿�ÀÂÁ ±\Ãb± Â;�´a�dejUi�cgf \^]V{er`cgst_Ldgstikh0µ,iO¶L]V�lÄíÂm\6µ�Å

17

Ø^=@[�Ü¼[vT2IYKFP ELÜ¼C�[kT2Ú1[2ü@EOMÅ?BK@[kP ?BÜÆÜ¼[vðLÛQ[�KQT�[ñP@?BEYZYWVEOMHÜ�é(GJILK@K@[kT2Úp?BIYKQÜ�Þ�[2Úgàx[�[kK
?´Ú`[�MHÜÅ?DKÿÚp=@[<¸ãgä EOW`[4Üp?BM,?BAUEOW`ADN�EOADÚp[kWp[vP�Ú`Iï?BKQT2ABÛQP�[TkEOABABÜ.ÚpI!Úp=Q[~�+C�[�WVE�Ú`?DK@Z�ùbN�Ü¼ò
Úp[�Møà6=@?UTV=SEYWp[+Úp=@[kK4W`[�AUEzNY[vPHÚ`I#Ú`=@[�K@[2ÚgàxIYW`â0EOKFP:ILK:Ú`IÅP@[kP�?UT�EOÚp[kPSP�[kÙo?UT2[vÜ�é�åxÚ6Ú`=@?BÜ
AD[kÙY[�AFIOê;<Jù@ä�IYK@ABN,ZY[�KQ[�W`?BT6T�ABELÜpÜp[kÜ�êíILW>Ú`=@[/¯�°
±�²,³s´�µ:EOKQP�¶�·�¸,¹`º�»�¼ EOW`[6ÛQÜ¼[vP�ébåxÚ
Úp=@[(ûQKQEOA�P�[�CQADI�NbMÅ[�KoÚ¸AB[�ÙL[�AQIYê;<Jù�ä Ú`=@[%¶�·�¸�¹`º�»|¼�?BÜxT2ILKoÙL[�WpÚp[vP#?BKoÚpI.Üp[�ÙL[�WVEOA@Üp[�C�ò
EOWVE�Úp[(?DKQÜ¼Ú`EYKQT2[vÜ>W`[�C@W`[kÜp[�KoÚ`?DK@Z.[kEYTV=HCQWpI�T2[vÜpÜpIYW¸à6?´Ú`=@?DK:Úp=@[+K@[2ÚgàxIYW`â�éLØ^=@[+MHEOC@C@?BK@Z#IOê
?DKQP@?DÙb?UP�ÛQEOAxEOC@CQAD?UT�EOÚp?BIYKQÜ�ILKLÚ`I C@W`IbT�[kÜ`Ü¼ILW`Ü�?UÜ�P�[�Úp[�W`MÅ?DKQ[kPñÛQÜp?DKQZ�Úp=@[HK@ILK�ò»êíÛ@KQT�Ú`?DILKQEOA
T2IYKFÜgÚ`W`EY?DKoÚ`Ü:Ü¼[�ÚSE�Ú4Úp=@[!<>ãgä�é^Ø^=@[vÜ¼[Ú`W`EYKQÜpABEOÚp?BIYKÃC@W`I�T2[kÜ`Üp[kÜ0EYWp[ÆP@[�MÅIYKQÜ¼ÚpWVE�Ú`[kP ?BK
Ü¼[vT�Úp?BIYKSöQé

�`L5K ��WZ�ÆW���e:a�TbY\P�[$e�T
a�QS�.Y�O@P�QSR�T<U�WZY\[]T
[$^�P._2O`U`a�T�R1cia

å(Ü&P�?UÜ`T2ÛQÜ`Ü¼[vP:CQWp[kÙo?BIYÛFÜ¼ABNYì@EHÜ`E�êí[�ÚgN:T2W`?´Ú`?BTkEOA;ÜpN�ÜgÚ`[�MÉM#ÛQÜ¼Ú&ÞF[3Þ@ÛQ?DADÚ+ÜpI#Ú`=QE�Ú&C�IOÚ`[�KoÚp?UEOA
=QE�wvEOWVP@ÜJEYWp[�EzÙYIL?BP�[vP0EYÜJê¡EYW^ELÜxCFIoÜpÜp?DÞQAD[LéoãeK4IYWVP�[�WxÚ`I,P�I#Úp=Q?BÜxÚ`=@[�ÜpN�ÜgÚ`[�M M#ÛQÜ¼ÚJêíÛ@ADûQA
E3KbÛ@M.Þ�[�WJIOêmÜ`E�êí[2ÚgN,W`[kðoÛ@?BWp[kM,[kKoÚ`Ü>P�[kWp?BÙY[vPÅÞbN,EYKQEOABN�Ü¼?UÜ�é�-JN,ÛQÜp?DKQZ+�3G��1EOKQK@IOÚVE�Úp?BIYKFÜ
IYK�Úp=Q[�	(ä|�ÌMÅI�P�[�A�MHEOKbN4IYêXÚp=@[vÜ¼[.Wp[vðLÛQ?DW`[�MÅ[�KoÚVÜ(T�EYK ÞF[,T�EYC�ÚpÛ@W`[kP ELÜ&CQEYW¼Ú+IOêXÚp=Q[
<>ãgä�ìbEOABADI�à6?BK@Z.EYÛ�ÚpILMHE�Úp[vP0TV=@[vTVâo?BK@Z.EYKQP0EYABÜpI.Üp[�CQEYW`EOÚp?BK@Z3Úp=Q[�Ü`E�êí[�ÚgN,T�IYKQT�[�W`KQÜXêíW`IYM
Úp=@[ÅC@AUE�ÚpêíIYW`M�Ü¼C�[kT�?´ûFT,T2ILKQT2[kWpKFÜ+ELÜ(ê¡EYW3EYÜ+CFIoÜpÜp?DÞQAD[Lé`�3G��îEOABABI�à&Ü+E�	(ä��îMÅI�P�[�A�Ú`I
ÞF[HEOKQK@IOÚVE�Úp[vP à6?DÚp=ñT2IYKFÜgÚ`W`EY?DKoÚ`Ü+à6=@?UTV=ïP�[vÜpT�Wp?BÞ�[.C@W`[,EYKQP1C�ILÜ¼Ú3T2IYKFP�?´Ú`?DILKQÜ�IYK!T2AUEYÜ`Ü
M,[�Úp=@I�P@ÜÅEYKQPÿEYABÜpIÆT2AUEYÜ`Ü#?DKbÙ�EOW`?BEYKoÚ`Ü�à6=Q?BTV=îEOC@C@ABNñÚpI!EOABA^M,[�Úp=@I�P@Ü,?BKÌÚ`=@[ST�ABELÜpÜké�ã¨Ú
EOABADI�à&Ü&T�IYKQÜ¼ÚpWVEO?BKoÚ`Ü^Ú`I0Þ�[#ÜpCF[vT2?DûQ[kP�êíILW(Ù�EOW`?UEOÞ@AB[kÜ�Ý}Ü¼ÛFTV=ÆEYÜ6Ù�EYAD?UP ?BK@C@Û�Ú�W`EYK@ZY[vÜ`ß^EYKQP
EOAUÜ¼IïêíIYW0ELT�Úp?BIYKFÜ ÝËÚpI�Üp=@I�àÉà6=FE�ÚHM.ÛQÜ¼ÚHI�T�T2ÛQW0P�Û@W`?DK@Z!êíÛ@KFT�Úp?BIYK [�üb[vT2Û�Ú`?DILKFßSæ ÇQì�çköOè¨é
Ø^?DMÅ?BK@ZST�IYKQÜ¼ÚpWVEO?BKoÚ`Ü�T�EYKïEOAUÜpI:Þ�[,ÜpCF[vT2?DûQ[kPÆÛQÜp?DK@Z��3G��Á[2übÚp[kKQÜ¼?BIYKFÜ+ÜpÛQTV=ïELÜ#æ �zè>EYKQP
Úp=@[vÜ¼[3EOW`[�Ùo?DÚ`EYA�êíIYW&EYKoN0Ü`E�êí[�ÚgN:T2W`?DÚp?UT�EOA�ÜpN�ÜgÚ`[�M à6?DÚp=�W`[kEOADò»Úp?BM,[�W`[kðoÛ@?BWp[kM,[kKoÚ`ÜkébØ^=Q[kÜp[
T2IYKFÜgÚ`W`EY?DKoÚ`Ü¸EOC@C@ABN.à6=Q[�KÅêíÛ@KQT2Úp?BIYKQÜxP�?BWp[vT�Ú`ADN#?DKoÚp[kW`ELT�Ú¸à6?DÚp=HILK@[(EYK@IOÚ`=@[�W¸EYKQPÅEOW`[6àJ[kADA
Ü¼Û@CQCFILW¼Ú`[kP�é@Ø^=@[vÜ¼[�=QEzÙL[+Þ�[�[kK4ÛQÜp[kP:ÚpIÅP�[kÙY[�ABIYCSEOK��3G��ïEYKQP�	(ä��!ÞQELÜ¼[vP:EOCQC@WpIoEYTV=
êíIYW6MÅI�P�[�ABAD?BK@Z0Ü`E�êí[�ÚgN:T2W`?´Ú`?BTkEOA;ÜpN�ÜgÚ`[�MHÜ3æ �Oè»é
Ø^=@?BÜ�CFEOC�[�W�[�üoÚ`[�KQPQÜ�Úp=@[vÜ¼[0T�IYKQÜ¼ÚpWVEO?BKoÚ`Ü+ÚpI ?BKQT�ADÛQP@[0E�KoÛQM.Þ�[�W3IOê^IOÚ`=@[�W�P@IYMHEO?BK

Ü¼C�[kT�?´ûFT#T2ILKQT2[kWpKQÜ&à6=@?BTV=1Üp=@ILÛ@ABPÆEOAUÜ¼IHÞ�[#TkEOC�Ú`Û@Wp[vP�?DKÆIYWVP�[�W6Ú`I:MÅIYW`[�êíÛ@ABADN P�[vÜpT�Wp?BÞ�[
Wp[vðLÛQ?DW`[kPïÞF[k=QEzÙb?DILÛ@W3EOKQPïÞ�[2Ú¼Ú`[�W.ÜpÛ@C@C�IYWpÚ.T2[kW¼Ú`?´û�T�E�Ú`?DILK;é;Ø^=@[vÜ¼[HEOCQC@ADN1ÚpI�ÈO?BKQP�?BW`[kT�Ú<È
?DKoÚp[kW`ELT�Ú`?DILKQÜ�é�-xN0Ú`=@?UÜ6àJ[�MÅ[kEYK4ILK@[3IOê�ÚgàJI,Ú`=@?DKQZLÜ�n

o T2ILM,C�IYKQ[�KoÚ`Ü^EYT2Úp?BK@Z.?BKQP�[kCF[kKQP�[kKLÚ`ADNHÞQÛ�Ú6M,[k[2Ú`?DK@ZÅE.T�IYMÅMÅIYK0ZLILEYA}ìLêíIYWx[2ü@EOMÅC@AB[YìÚp=@[�[kK@ZY?BK@[�IOê�E,T�EYWxCQWpI�Ùb?UP�[kÜJCFI�àx[�WvìoÞ@Û�Ú^Úp=@[3Ü¼Úp[k[�W`?DK@Z#C@W`I�Ùo?UP�[vÜJT�IYKoÚpW`IYA�IOê�Úp=QEOÚ
CFI�àx[�W

o EYÜ`Ü¼ÛQM,C@Úp?BIYKQÜÅEOÞ�IYÛ@Ú#Ú`=@[�IYC�[�WVE�Úp?BIYKÿIOê�EYK@IOÚ`=@[�WÅT2ILMÅCFILK@[�KoÚkì�êíILWÅ[2ü@EOMÅC@AB[Yì�Úp=Q[êíWp[vðoÛ@[�KQT�N�à6?DÚp=Hà6=@?UTV=HP@E�ÚVE+?UÜXEYTkðoÛ@?DW`[kP#ÞbN#E�MÅ[kELÜ¼Û@W`[�MÅ[kKLÚ>Üp[�KQÜpIYWvì�IYW�Ú`=@[&Û@K@?DÚ`Ü
?´Ú&?UÜ6MÅ[kELÜ¼ÛQWp[vP0?BK

Ø^=@[kÜp[�P�[�C�[�KFP�[�KQT�?D[vÜ&IYêËÚp[�K EYC@CF[vEOW&?BK�CQEOWpÚ`Ü&IOê�Úp=@[.ÜpN�ÜgÚ`[�M ÜpEOêí[2ÚgN:TkEYÜp[3Þ@Û�Ú+EYWp[�K@IYÚ
[2ü�C@AB?BT�?´Ú&?BK1Ü¼N�Ü¼Úp[kMÉMÅI�P�[�AUÜ�éQã¨ê�Ú`=@[�N�EOW`[�ADIoÜgÚ6Ú`=@[�K�?DÚ(?BÜ&M,ILWp[3P�?Dþ0T2Û@ADÚ&Ú`I0EYT�T�Û@WVE�Úp[kADN
EYÜ`Ü¼[vÜpÜ.Úp=@[�?BMÅCQEYT2Ú,IYê+EïÜpN�ÜgÚ`[�M TV=QEYK@ZY[Lé�ãeK EYPQP�?´Ú`?DILK;ì�?´ê�EÆMÅI�P�Û@AUEOWHP�[kÙY[kADILC@MÅ[�KoÚ
C@WpI�T�[kÜ`Ü>?UÜJÛFÜ¼[vPÅÚp=@[kK:ZLÛQEOWVEOKoÚp[k[kÜ>EYWp[+Wp[vðoÛ@?DW`[kP,Ú`=QE�Ú6T2ILMÅCFILK@[�KoÚ`ÜxEOW`[&?BKoÚp[�W`IYC�[�WVEOÞQAD[Lé
Ø^=@?BÜ0CQEOC�[�WHC@W`IYC�ILÜp[kÜÅÛFÜ¼?BK@Zd�3G��á?DKÃEñà^EzN�à6=@?BTV= =@[kADCFÜÅÚpIÌTkEOC�Ú`Û@Wp[SÚ`=@[kÜp[Yé¸Ø^=Q[
êíIYABADI�à6?BK@ZÅ?BÜ6E,AB?BÜ¼Ú&IOê�C@W`IYC�[�WpÚp?B[kÜxà6=@?UTV=SÚp=@[�T�IYKQÜ¼ÚpWVEO?BKoÚ`Üxà6?DABAmEYC@C@ABNHÚpI�n

18

o �)�`^�P�T�[N��e ò0ÜpIYMÅ[2Ú`?DMÅ[kÜ:ÚgàxIÿIYWSMÅIYW`[!ÜpN�ÜgÚ`[�MHÜ4M.ÛQÜ¼ÚSÞ�[!C@ABELT2[vP/?BK P�?('�[kWp[kKoÚC@=bN�Ü¼?UT�EYA�ADI�T�EOÚp?BIYKQÜ&?DK�IYWVP�[kW^ÚpIHC@W`[�ÙL[�KoÚ&E,T�IYMÅMÅIYKSê¡EO?BABÛ@Wp[�TkEOÛQÜp?BK@Z,Úp=@[kMøEOABA�Ú`I
ê¡EO?BA}é

o W���e:^�R�É:T�y:P�_�f:R�É)R1elf:R1el^�[$R1a ò3ÜpIYMÅ[2Ú`?DMÅ[kÜ,EÆT�IYMÅMÅIYK�ê¡EY?DABÛ@W`[:?UÜ#EzÙLIY?UP�[kPñÞbNÛQÜp?DK@ZHT�IYKQT�[�C�Ú`ÛQEOABADN4P�?m'�[�W`[�KoÚ&MÅ[2Ú`=@I�P@Ü^Ú`IÅP@[�W`?DÙL[�PQE�Ú`E
o ghe�T�R�Y\��É)R�YsP�Ê:[N_$[]T<UXË�Y\��É)R�Y
T
[$R1a òxÚp=Q[kÜp[#EOW`[�ÛQÜp[kP ÚpI:[kKQÜpÛ@Wp[�Úp=QEOÚ�T�IYMÅCFILK@[�KoÚVÜ=QEzÙY[3T�IYMÅCQE�Ú`?DÞQAD[3P@EOÚ`E#êíIYW`MHE�Ú`Ü6ÜpÛQTV=�EYÜ^MÅ[kELÜ¼ÛQWp[kM,[kKoÚ^ÛQK@?´ÚVÜ�ìQWp[�êíWp[vÜ¼=SW`EOÚp[vÜJ[�Ú`TYé
o �½Y\f:R�Y\[Nelk ò(ÜpIYMÅ[2Ú`?DMÅ[vÜ�Úp=@[kWp[Å?UÜ3ESP@[�C�[�KQP�[kKQT2NÆIYKïÚp=@[HILW`P�[kW�IOêJ[�ü�[kT2Û@Úp?BIYK!IOêIOÚ`=@[�W`à6?BÜp[&?BKQP�[kCF[kKQP�[�KoÚ^EOC@C@AB?UT�E�Ú`?DILKQÜkìO[Yé ZQéLà6=@[�K0ILK@[(EYC@C@AB?BTkE�Úp?BIYKÅM#ÛQÜgÚxMÅIYK@?DÚpILW
Úp=@[3ILÛ�ÚpCQÛ�Ú&IOêXEOK@IYÚp=@[kWké

Ø^=@[1AB?BÜ¼Ú4=QELÜHÞ�[�[�K P�[�W`?DÙL[kPÃELÜHCQEOWpÚ:IYê.E�à6?BP@[�W4Ü¼ÚpÛFP�NÁ?BKoÚpIÌMÅI�P�[kADAB?DKQZÁÜ`E�êí[2ÚgN
T2W`?´Ú`?BTkEOA6Ü¼N�Ü¼Úp[kMÅÜ�æDç
��è»é�Ø^=@[SûQWVÜgÚ,Úp=@W`[�[�Üp[2Ú`Ü,ILKÌÚp=Q?BÜÅAB?BÜ¼ÚHT�EOKÁÞF[Üp?DMÅC@ABNÌP�[vÜpT�Wp?BÞF[vP
ÞoNÌT�IYMÅCQEYWp?BK@ZïÜ¼Ú`EOÚp?UTSC@WpILCF[kW¼Ú`?D[vÜ.IYê(Ú`=@[T2IYMÅC�IYK@[kKoÚ`ÜÅEOKQPÌÚp=@[k?DWÅMÅ[2Ú`=@I�P@ÜHEOKFPÌàx[
=QEzÙY[ÅT�EYC�ÚpÛ@W`[kP1Úp=@[vÜ¼[Å?BKÆÚ`=@[,êíIYABADI�à6?BK@Z4àxEzNLé�!�?BW`Ü¼ÚpABNYì;E4ZYABIYÞFEOA�MÅ[2Úp=QIbPï?UÜ3EYP@P�[vP Ú`I
Úp=@[~��T2AUå&KbN!T�ABELÜpÜ�à6=@?BTV=�W`[2Ú`Û@W`KQÜ.P@EOÚ`E à6=Q?BTV=ÌEYADABI�à&Ü�TV=@[vTVâo?BK@ZFé@!@ILW.[2ü@EYM,CQAD[Lì;Úp=Q[
M,[�Úp=@I�P�Ì4¹JÍ�±DÎoÝNÏ�n�¶�ÐhÑN¸�¹JÒ@ß�n�·Ó±�´sÍS¹�Ô:T�EYK4Þ�[�EYPQP�[kP4à6=@?UTV=4ÚVEOâL[kÜ^EOK EOW`ZYÛQM,[kKoÚ^EYKQP
Wp[�ÚpÛ@W`KQÜ,E1ÜgÚ`Wp?BK@Zï[�KQT�IbP@?DK@ZÆÚp=@[�EOW`ZYÛQM,[kKoÚ�� Ü�Û@K@?DÚ`Ükì�[Yé ZQéBì�âb?BADIoÜ�ì�MÅ?DAB[kÜkì�Mv�OÜ¼[vTOé�Ø^=@?BÜ
M,[�Úp=@I�Pï?BÜ�ZLADILÞQEOA�?BKÆÚ`=@[0Üp[�KQÜp[.Ú`=QE�Ú3?DÚ�K@[�[vP@Ü+ÚpI�Þ�[ÅEzÙ�EY?DAUEOÞ@AB[,?DK![�ÙL[�W`N1T2AUEYÜ`Ü�ì�Úp=bÛQÜ
EYP@P�?BK@Z#?´ÚxÚpI,E.T2AUEYÜ`ÜJAD?BâY[���T2AUå&KbNÅ?BÜxEOC@CQWpILC@Wp?UE�Ú`[Yébùb[kT�IYKQP�ABNYìb[vEYTV=HW`[�AB[�Ù�EOKoÚxT�ABELÜpÜJ=QELÜ
EOK.?BKbÙ�EOW`?BEYKLÚ�EYP@P@[kP�à6=Q?BTV=,ÛQÜp[kÜmÚp=@?UÜ�MÅ[2Úp=QIbP.ÚpI�Üp[2Ú�Úp=@[^Ù�EOABÛ@[xIOêFEYK#E�ÚpÚpW`?DÞQÛ�Úp[LéOØ^=@[�K;ì
ûQKQEOABABNYìQEYK4?BKoÚp[�ZLWp?DÚgN0T2ILKQÜ¼ÚpWVEO?BKLÚ6?UÜ6EYP@P@[kPSà6=@?UTV=4AB?DKQâbÜ6ÚgàJIHT2AUEYÜ`Üp[kÜké1*(é ZFé

T�IYKoÚp[�übÚ(GJAUEYÜ`Ü`å ?BKbÙ�n
ÛQK@?´ÚVÜkÝ}Ü¼[kA´êgé Úp[kMÅCFß,ÕÆÈLT2[kKLÚ`?DZLW`ELP�[�È

T�IYKoÚp[�übÚ(GJAUEYÜ`ÜV-Ã?DKbÙ�n
ÛQK@?´ÚVÜkÝ}Ü¼[kA´êgé Úp[kMÅCFß,ÕÆÈLT2[kKLÚ`?DZLW`ELP�[�È
ÛQK@?´ÚVÜkÝ}Ü¼[kA´êgétGJAUEYÜ`Üpå.é Ú`[�MÅCFß,ÕýÛ@K@?DÚ`ÜvÝ¡Üp[�ADêgé Ú`[�MÅCFß

Ø^=@[�W`[xEYWp[xIOÚ`=@[�WXC�IOÚ`[�KoÚp?UEOA�MÅ[�Úp=@I�P@Ü�êíILW>Ü¼ILADÙb?BK@Z(Ú`=@?UÜ�C@WpILÞ@AB[�M�é�!@ILWX[2ü@EOMÅC@AB[YìzIYKQ[
T2IYÛQABPñP�[�ûQK@[0ESZYABIYÞQEYA>Ü¼?BK@ZLAD[�ÚpIYKñT2AUEYÜ`Ü�Úp=FE�Ú.T2ILKoÚ`EO?BKQÜ�EOABA¸Ü¼Ú`EOÚp?UT#CQWpILCF[kW¼Ú`?D[vÜ3Ü¼ÛQTV=�ELÜ
Û@K@?DÚ`Ü��@T2AUEYÜ`Ü¼[vÜ>Ú`=QE�Ú6K@[k[kPHÚ`=@[kÜp[�C@W`IYC�[�WpÚp?B[kÜJÛQÜ¼[+Úp=Q?BÜ6T�ABELÜpÜxEYÜ^P�[vÜ¼?BWp[vP�é�Ø^=@?UÜJ?UÜ6Üp?DMÅ?BABEYW
ÚpIHÚ`=@[#ÜpIYABÛ�Úp?BIYKÆà6?´Ú`=Ö��T2AUå&KbNSÞ@Û�Ú+?UÜ&KQIOÚ�ELÜ6ëQ[�ü�?DÞ@AB[Yì�EYÜ+EOABA�Ü¼Ú`EOÚp?UT3C@W`IYC�[�WpÚp?B[kÜ&M#ÛQÜ¼Ú
ÞF[HP�[�Úp[�W`MÅ?DKQ[kP!E:C@W`?BIYW`?}ì�à6=@[kK1Úp=Q[0Ü¼?BK@ZYAB[2Ú`IYKï?BÜ�?BKQÜgÚVEOKoÚp?UE�Ú`[kP�é;å(K@IOÚ`=@[�W3ÜpIYABÛ�Úp?BIYKï?BÜ
ÚpIñC@W`I�Ùo?UP�[S?DKoÚ`[�Wpê¡EYT2[vÜ,Úp=QEOÚ0P�[kT�ABEYWp[�ÜgÚVE�Ú`?BTSC@W`IYC�[�WpÚp?B[kÜkì>EOKQPÁ=QEzÙL[SP�?('�[�W`[�KoÚ0T2AUEYÜ`Ü¼[vÜ
?DMÅC@AB[�MÅ[�KoÚ+Úp=@[.P@[kÜp?DW`[kP�?BKoÚp[�Wpê¡EYT�[kÜ6à6=Q[�K�Úp=Q[�C@W`IYC�[�WpÚp?B[kÜ&EYWp[3K@[k[kP�[vP�é�Ø^=@?BÜ+Ü¼ILADÛ@Úp?BIYK
àJILWpâ�Ü&ÞQÛ�Ú�P�Ib[kÜ+K@IOÚ3EOC@C�[kEYW(Ú`I:Þ�[HEYÜ+ZY[�KQ[�WVEOA�ELÜ([�übÚp[�KFP�?DKQZ~��T�ABå(KoNLìQÚ`=@[ÅABEOÚ¼Ú`[�W�IOê
à6=@?BTV= EYADABI�à&ÜxC@WpILCF[kW¼Ú`?D[vÜJÚpIHÞ�[�EYP@P�[vP0Ú`IHAD[kZLELT2NHMÅI�P�[�AUÜ�é
Ø^=@[ÅM,ILWp[HT�IYMÅC@AB[2üïILW`P@[�W`?DK@Z�T2ILKQÜ¼ÚpWVEO?BKLÚVÜ�=QEzÙY[ÅK@IYÚ�NL[2Ú�Þ�[�[kKïêíÛQADABN1ÚVEYTVâbAD[vP�ìmELÜ

à6=@?DAUÜ¼Ú�?DÚ�?BÜ�C�ILÜ`Ü¼?BÞ@AB[.Ú`I4?BMÅC@AB?BT�?´Ú`ADNÆTkEOC�Ú`Û@W`[#W`[kðoÛ@?BWp[vP Þ�[�=QEzÙb?BIYÛ@W�ÞbN ÛQÜ¼?BK@Z�Ü¼[kCQEOWVE�Ú`[
Úp?BM,?BK@Z T2ILKQÜ¼ÚpWVEO?BKLÚVÜ6êíILW�[vEYTV=!T2AUEYÜ`Ü�é�ã¨Ú3?BÜ�MÅIYW`[#P�?Dþ0T2Û@ADÚ�ÚpIS[2ü�C@AB?BT�?´Ú`ADNïP�[kÜ`T2W`?DÞ�[#Úp=QEOÚ
Úp=@[kWp[&?UÜ¸E�W`[�AUE�Ú`?DILKQÜp=@?DCÅÞ�[2Úgàx[�[kKÅÚp=@[vÜ¼[6Ú`?DMÅ?BK@ZLÜkéLØ^=Q[&ABEOÚ¼Ú`[�W¸?UÜXW`[kðoÛ@?BWp[vP#ÚpI.ELÜpÜp[kÜ`Ü�Úp=Q[
[h'�[kT�Ú&IYê�EYK4?BKQT�Wp[kM,[kKoÚ`EOA;TV=FEOK@ZL[+ILK4Ú`=@[�Ü`E�êí[�ÞF[k=QEzÙb?DILÛ@W^IOêXEÅÜ¼N�Ü¼Úp[�M�é

19

× Ø�Ù28�Ú�Û%C�;

Ø^=@?BÜ3Üp[kT2Úp?BIYK!ÛQÜp[kÜ3E�Ü¼?BMÅC@AB[,[�ü@EOMÅC@AB[,IYêxE4ûFT2Úp?DÚp?BIYÛQÜ�[kK@ZY?BK@[HT2IbIYAB?BK@ZSÜpN�ÜgÚ`[�M�ILK!EYK
EO?BW`T�W`EOêËÚJÚ`IÅP@[�MÅIYKQÜ¼ÚpWVE�Ú`[+=QI�àÃÚp=@[3ä1õ(åýEOC@C@W`ILELTV=HêíIYW^ãgä1å àxIYW`â�Ü�éoãeK4Úp=@?UÜ6Ü¼N�Ü¼Úp[kMSì
EOC@C@AB?UT�E�Ú`?DILKÜpIOêËÚgà^EOW`[�Ú`EOâL[kÜSE�=@[vE�Ú�M,[vEYÜpÛ@W`[�MÅ[�KoÚ0êíW`IYM EÿÜp[�KFÜ¼ILW4EOKFP/T�EYABT�Û@ABEOÚp[vÜ
à6=@[2Ú`=@[�W&EÅT2IbILAD?BK@Z,[�AB[�MÅ[�KoÚ(EYT2ÚpÛQEOÚpILWxW`[kðoÛ@?BW`[kÜxEYPs�gÛQÜ¼ÚpMÅ[kKLÚvéQØ^=@[3ÜpNbÜ¼Úp[kM =QELÜ6EOKS?DK�ò
P�[�C�[�KQP@[�KoÚ�=@[vEOADÚp=�MÅILK@?´Ú`IYWmÚpI&à^E�ÚVTV=�Úp=@[J?DK@CQÛ�Ú�EYKQP�IYÛ@ÚpC@Û�Ú�IOê�Ú`=@[¸MHEO?BK.EYC@C@AB?BTkE�Úp?BIYKmé
Ø^=@?BÜ#EYT2Úp?BÙzEOÚp[vÜ.E à^EOW`K@?BK@Z AD?BZY=oÚ.?BKñÚp=Q[:C@W`[kÜp[�KQT�[0IOê&EYK�[�W`WpILWké;Ø^=@[:C@?DABIOÚÅT�EYKñÚ`EOâL[
EYT�Ú`?DILK4?Dê�Úp=@[3à^EOW`K@?BK@Z#AB?BZY=oÚ&?BÜ6ELT�Ú`?DÙ�E�Ú`[kP�é

Ü@LNM O`U`abT
R1cÝË�gh�
å ÜgÚVE�Úp?UTHÜ¼ÚpW`ÛQT�Ú`Û@Wp[0P@?BEYZYWVEOM êíIYW�Ú`=@[:ÜpN�ÜgÚ`[�M�?UÜ�Üp=@I�à6Kï?BKi!�?DZLÛ@W`[��@émØ^=@?UÜ�P�?UEOZLW`EYM
Ü¼=@I�à&Ü�Ú`=@[,��T2ILWp[^T2ILM,C�IYKQ[�KoÚ`ÜX?BK#Úp=@[&T�IoILAD?BK@Z3T2ILKoÚpW`IYA@ÜpNbÜ¼Úp[kM�é�!�?BWVÜgÚ`ADNLìYE�=@[kEOÚXÜp[�KFÜ¼ILW
M,[vEYÜpÛ@W`[kÜHÚ`=@[ÆIYÚp=@[kWSÜpN�ÜgÚ`[�MHÜHÚ`[�MÅC�[�WVE�ÚpÛQWp[LéxØ^=@[!Ü¼[kKQÜpIYWVÜHÙ�EOABÛ@[Æ?UÜ:ÛFÜ¼[vPÃÞFIYÚp=/ÞbN
Úp=@[,T2IbIYAB?DKQZ0T2IYKoÚ`WpILA;Ü¼N�Ü¼Úp[�M EOKFP EOAUÜ¼IHÞbN4Úp=@[�=Q[kEOADÚp=ÆM,ILK@?DÚpIYWvéQØ^=@[#T2IbIYAB?DKQZ0T2IYKoÚ`WpILA
Ü¼IYêËÚgàxEYWp[^Ü¼[kKQP@Ü�Ú`=@[6Wp[vðoÛ@?DW`[kP#T2ILM,MHEYKQP�Ú`I�Úp=@[&T�IoILAD?BK@Z3ÜpNbÜ¼Úp[kM ?DÚ`Üp[�ADêgìYEOKQP#?DÚ`Ü�IYÛ@ÚpC@Û�Ú
ÙzEYADÛQ[,?UÜ�EOAUÜ¼IS?BK@C@Û�Ú�ÚpISÚ`=@[Å=@[kEYA´Ú`=ïMÅIYKQ?´Ú`IYWvé�Ø^=Q[#=@[vEOADÚp=!MÅIYK@?DÚpILW�?UÜ3E�ÚpÚ`ELTV=@[kP1ÚpI�E
àxEYWpK@?BK@Z,AD?BZY=oÚvé

¿)À(Á ±bÞQ±�ßJà a�f3_o�t]^rVi�ik�ts´hL�3{¨|Y{¨dg]Vf Âmº¨µ

-xELÜ¼?UTxÜpEOêí[2ÚgN�EOKFEOABNbÜp?UÜ�IYê@Úp=Q[&Ü¼N�Ü¼Úp[�Mý=FEYÜ�Þ�[�[�K,C�[�WpêíIYW`M,[vP.ÛFÜ¼?BK@Z�E%!FEO?BADÛQWp[^ä I�P�[kÜ
EOKQP�*�'�[kT�ÚVÜ#å(KQEOABN�Ü¼?UÜ.Úp[kTV=QK@?BðoÛ@[ñæDçYç2è¨é�ãeKÌÚp=Q?BÜ#Úp[vTV=@K@?UðoÛ@[4ZLÛ@?UP�[�àxIYWVP@Ü.EYWp[:ÛQÜ¼[vP�Ú`I
Ü¼Û@ZLZY[vÜgÚ#ê¡EO?BADÛ@W`[kÜÅP�ÛQWp?BK@ZñT2IYMÅC�IYK@[kKoÚ,?BKoÚp[�WVEYT2Úp?BIYKQÜkéÓ*XübÚp[kKQÜ¼?BÙY[SEOKQEYADN�Üp?BÜ#?UÜ#W`[kðoÛ@?BW`[kP
?DKïIYWVP�[�W(ÚpI4P@[�MÅIYKQÜ¼ÚpWVE�Ú`[�Ú`=QE�Ú3EYÜ+MHEOKbN:ê¡EY?DABÛ@W`[kÜ�EYÜ+CFIoÜpÜp?BÞ@AD[#=QEzÙY[#ÞF[k[�K1?UP�[kKLÚ`?´ûF[kP�ì
=@I�àJ[kÙY[kWJêíILW6Wp[vEYÜpIYKQÜJIOêXÜpCQEYT�[�ILK@ABN:EÅÜ¼MHEOABA�[2übÚ`W`ELT�Ú6?BÜ(Ü¼=@I�à6KS?BK:ÚVEOÞ@AB[HçYé
Ø^=@[�W`[JEYWp[xE+T�IYÛ@C@AB[xIOêFT�IYMÅMÅ[�KoÚ`Ü�IYK.Úp=@[^EOKFEOABNbÜp?UÜmW`[kÜpÛ@ADÚ`Ükés!�?BW`Ü¼ÚpABNYìvÚ`=@[JÞ�[�=FEzÙo?BIYÛQW

IOê�Úp=@[.M,ILK@?DÚpIYW(?DKÆP@[2Úp[vT�Ú`?DK@Z:?´ê�Úp=Q[.Ü¼N�Ü¼Úp[kMø?UÜ&I�ÙL[�W`=@[kEOÚp?BK@ZÅ?BÜ&T�WpÛFT2?UEOA�Ú`I0C@W`[�ÙY[kKoÚp?BK@Z

20

á ¯o«JâÂã�Ãb±�ß`à dec¼akrpdXjBcgivf q�|L{¨dg]`fÆä;µ ß ·

äbakst�tnLcg](µ,iO¶Y] l�aknL{e] ßJå]Vr`d \x]`cgstyz]�¶#½¸]�¾�nos¹cg]Vf3]`hOd
�xf3st{e{es´ikh ¿6\6a�d¼aHhLikd
{e]Vh�døjDcgivf ·J_L_o�tstr�a�¿
dgstivh�dgi^l�i�iv�tstho�&·JrpdgnL¿
a�dgi�c

·J_L_o�tstr�a�dgstivh Â;cgi�¿
rV]V{e{ei�cx{¨dgik_o{

q�|Y{¨dg]Vf f�aV|i�yv]`ce¿
³]�a�d

µ,ikhos¹dgikc�¶L]`dg]`r`dg{�a�hb¶6a�r`¿
dgstyka�dg]V{�Ç�a�cghLs´hL�3�ts´� ³ d

�xf3st{e{es´ikhú¿Ìµ,ikhos¹dgikc
¶Li�]V{ hoi�d�akr`dgstyOs´a�dg]
ÇXa2cghostho�3�tst� ³ d

µ,ivhLstdgi�c st{ ivh
{gakf3] _Lcgi�rV]`{e{eikc
ak{Æ{¨dgiv_L_�]�¶áf�aksth
ak_L_o�tstr�a�dgstivh

æ�a�cghLs´hL�î�tst� ³ d1hoi�d
{ ³ i�Ç>h:dgi�_ost�tikd6akhb¶
{¨|Y{¨dg]Vf f�aV| i�yv]`ce¿
³]�a�d

µ,ikhos¹dgikc st{ sthb¶Y]V_�]VhY¿
¶Y]Vh�dg�¹| �ti�r�a2dg]�¶ jBcgikf
f�a�sth,a�_o_o�tstr�a2dgs´ikh

Ä�a2dg]�¿@\6a�d¼a¸st{m�´a2dg]Xa�ce¿
cgstyYsthL��a2d¸l�i�iv�tstho�3·¸r`¿
dgnba2dgikc

\6a�d¼ast{ ³]V�´¶ no_
ivhÅhL]`d»Ç�ikcg�

q�|Y{¨dg]Vf f�aV|i�yv]`ce¿
³]�a�d

\^a�d¼a À�]Vstho�/{e]Vh�dÆjBcgikf
f�a�sth ak_L_o�tstr�a�dgstivh dgi
r`i�iv�tstho� akr`dgnoa�dgikcñf�no{¨d
a2cecgstyz]áÇ>s¹d ³ sth��V��f3st�¹¿
�tst{e]VrVikhb¶Y{ ikj�{e]Vho¶Lstho�Yu
a�hb¶ µ,ivhLstdgi�c ¶L]`dg]Vrpdg{
a�hb¶ýa�r`dgstyva2dg]V{!ÇXa2cghostho�
�tst� ³ d

E�=QE�wvEOWVPîIbTkT2Û@W`W`?DK@ZFé¸Ø^=@?UÜ:W`[kðoÛ@?BW`[�MÅ[�KoÚ0=QELÜ0K@IYÚ4Þ�[�[�K P�[�ÙL[�ABIYC�[kPîêíÛ@WpÚp=@[kW:?BKÃÚp=Q[
CQEOC�[�WHEYÜ#?DÚÅT�IYKbÙY[kW¼ÚVÜ3ÚpIñEïABEYWpZL[�W#Üp[2Ú,IOê+T�IYKQÜ¼ÚpWVEO?BKoÚ`Ü.Úp=QEYKÁTkEOKÌÞ�[P�[�MÅIYKFÜgÚ`W`EOÚp[kP;é
ùb[kT�IYKQP�ABNYì^à6=@?BAUÜgÚ�Úp=Q[!MÅILK@?´Ú`IYW�à6?BADA3P�[�Úp[kT2Ú I�ÙY[�W`=@[vE�Úp?BK@ZÌ?Dê.Ú`=@[�P@E�ÚVEÁÜp[�KoÚSÚpIîÚp=Q[
ç ³\³\Ñ]ÍS¹�Ô1¸/Ðè±�Ì�Ï�±�³s´�?UÜ#P@[�AUEzNY[kP;ì�?DÚ#?UÜ.?BMÅCFILW¼ÚVEOKoÚ.Ú`IÆC@W`[�ÙL[�KoÚ.Ú`=@?UÜ#ELÜ�ê¡EYW,ELÜ�C�ILÜ`Ü¼?BÞ@AB[
?DK0ILW`P@[�WXêíILW>Úp=Q[+ÜpNbÜ¼Úp[kMôÚ`I�Þ�[(W`[�AB?BEYÞ@AD[LéLØ^=@[kWp[�êíIYW`[^Úp=@[(Úp?BMÅ?DK@Z.Wp[vðLÛQ?DW`[�MÅ[�KoÚ¸M#ÛQÜ¼ÚJÞ�[
Û@C@=@[kABP�é
Ø^=@[.ÚgàxISWp[vðLÛQ?DW`[�MÅ[�KoÚVÜ+ILKÆABI�T�E�Ú`?DILK!EYKQP Ú`?DMÅ?BK@Z�=QEzÙY[,Þ�[�[�KñT2ILKbÙY[�WpÚp[vP1P�?BWp[vT�Ú`ADN

?DKoÚpI��3G��îT2IYKFÜgÚ`W`EY?DKoÚ`ÜkéJ	(Üp?DKQZ:Ú`=@[ÅM,[�Úp=@I�P!P�[kÜ`T2W`?BÞF[vP1?BK!Üp[kT2Úp?BIYK��Qé �0Úp=Q[#êíILADABI�à6?BK@Z
�3G��!Ü¼Ú`EOÚp[kM,[kKoÚ`Ü^=QEzÙL[�Þ�[�[kK EYP@P�[vP0Ú`I0P�[kÜ`T2W`?BÞF[�Úp=Q[3ADI�T�EOÚp?BIYKSWp[vðoÛ@?DW`[�MÅ[kKLÚVÜbn

T�IYKoÚp[�übÚ(GJIbILAD?BK@ZbGJILKoÚpW`IYA�?DKbÙ�n
ABI�T�EOÚp[LÝ}Ü¼[kA´êgé ABIbTkE�Ú`?DILKFß2ÕÆÈOÛQKQP�[2ûFK@[kP�È

T�IYKoÚp[�übÚ2"([kEYA´Ú`=Qä IYKQ?´Ú`IYW6?BKoÙ�n
ABI�T�EOÚp[LÝ}Ü¼[kA´êgétGJIbIYAB?DKQZbGJIYKoÚ`WpILA}é ADI�TkE�Úp?BIYK�ß2é�êABI�T�EOÚp[LÝ}Ü¼[kA´êgé ABIbTkE�Ú`?DILKFß

Ø^=@[kÜp[+T�IYKQÜ¼ÚpWVEO?BKoÚ`Ü¸EYWp[(ÛQÜ¼[vPÅÚpIÅÜ¼Ú`E�Ú`[&Ú`=@[+ABI�T�EOÚp?BIYKHIOê�[kEYTV=0T�IYMÅC�IYK@[kKLÚ^EOKQPHÚp=@[kK
ÜgÚVE�Úp[JÚp=FE�Ú�Úp=@[xADI�TkE�Úp?BIYKFÜmÜp=@IYÛ@AUP�KQIOÚ�ÞF[JÚp=@[^Ü`EOMÅ[Yézå(Ü�Úp=Q[¸ûQKFEOAoADI�T�EOÚp?BIYK�?UÜ�E�Ú�C@W`[kÜp[�KoÚ
Û@KQP�[�ûQK@[kP;ì�Úp=@?UÜ>T�IYKQÜ¼ÚpWVEO?BKoÚXTkEOK@KQIOÚXÞF[6ÙL[�W`?´ûF[kP.ÚpI3Þ�[^ÚpW`Û@[6IYW�ê¡EYABÜp[6EOKQP#ÚpI3EzÙLIY?UP3ê¡EOAUÜp[
K@[�ZoE�Úp?BÙY[vÜXÚ`=@[+ABI�T�EOÚp[(=FEYÜ>ILK@ABN,Þ�[�[kK4TkEOABAD[vPÅêíIYWJÚp=@[ç ³\³\Ñ]ÍS¹�Ô ç ³s¹J±�´\³\Ñgé1"&I�àx[�ÙY[kWkìY?´Ú^?BÜ
EOK!?DMÅC�IYWpÚ`EOKoÚ3W`[kðoÛ@?BWp[kM,[kKoÚ�ELÜ�?´Ú3[�KFÜ¼Û@W`[kÜ�Ú`=@[ÅC@?BADIYÚ�à6?DABAXÞF[0EYAD[kW¼Ú`[kPÆÚpISÚp=Q[ÅÜpN�ÜgÚ`[�M
I�ÙY[�W`=@[vE�Úp?BK@ZFéLãeK EYPQP�?´Ú`?DILK;ìbÚp=Q?BÜ6T�IYKQÜ¼ÚpWVEO?BKoÚ^à6?BABA;EYT�Ú`ÛQEOABABN0=@[�ABCSZYÛ@?UP�[�Úp=@[�Ú`W`EYKQÜpABEOÚp?BIYK
C@WpI�T�[kÜ`Ü¸êíILW&Þ�IOÚp=�AB[�ÙL[�AUÜJIYê�<xù�ä�é
Ø^=@[:Üp[kT2ILKQPñÚ`?DMÅ?BK@ZÆW`[kðoÛ@?BWp[kMÅ[�KoÚ.=QELÜ�Þ�[�[�Kÿ[2ü�C@W`[kÜ`Ü¼[vPñÛQÜ¼?BK@Z Ú`=@[:MÅ[�Úp=@I�P@Ü,P�[2ò

ÜpT�Wp?BÞF[vP:?BK�æ �@ìë�Oè�n

21

T�IYKoÚp[�übÚ(GJIbILAD?BK@ZbGJILKoÚpW`IYA�n(n¹ùb[�KFP@ØmI�GJIbIYAB?DK@Z�*>AB[�MÅ[�KoÚzÝ}ßèn
C�ILÜ¼Ú�nFØ^?DMÅ[Yé K@I�à�é/ÕýØ^?BM,[Lé KQI�à/ì+C@Wp[îíúç
�

EYKQP�GJIbILAD?BK@ZLå+T�Ú`ÛQE�Ú`IYW�ïÿÜp[2ÚVð>EOA¨Ý¡T�Û@Wëð>EYAUß
Ø^=@?BÜJT2ILKQÜgÚ`W`EY?DKoÚ>ÞQELÜ¼?UT�EYADABNÅÜgÚVE�Úp[vÜXÚ`=QE�ÚJEOÚ¸Ú`=@[&[�KFPHIOê�Ú`=@[&IYC�[�WVE�Ú`?DILKÅÚpI.Üp[�KFPHP@E�ÚVE

ÚpI3Ú`=@[(T2IbILAD?BK@Z3[�AB[�MÅ[kKLÚvìYK@I.M,ILWp[^Ú`=QE�Ú�ç���MÅ?BADAB?BÜp[kT�IYKQPQÜ>Ü¼=QIYÛ@AUPÅ=QEzÙY[6CFEYÜ`Ü¼[vP,EYKQP,Úp=Q[
Úp=@[ç ³\³\Ñ$Í�¹�Ô�¸,Ðh±�Ì4Ï�±�³s´ZnÂn�Î
°
±Dñ�Ï1Ñ¼Ý»ßxM,[�Úp=@I�P�Üp=@IYÛ@AUP4=QEzÙY[�Þ�[�[�K TkEOABAD[vP�é

Ü@L5K ò+R1jlP�{`[$�4y@Y\P�_�ËZO@�

Ø^=@?BÜxÜp[kT�Ú`?DILK:P�[vÜpT�Wp?BÞF[vÜXÚ`=@[&ûQWVÜ¼ÚJAB[�ÙY[kAQIYêm<Jù�ä�ELÜ¸P�[vÜpT�Wp?BÞ�[kPH?BK:Üp[kT�Ú`?DILKv�@éBçYéLãeK0IYWVP�[kW
ÚpI0Þ@ÛQ?DAUP EH<Jù�ä Ú`=@[�ãgä1åô<¸õ�ä Ü¼=@I�à6K�?BK�ûQZYÛQWp[Hç3?UÜ&MÅ[�W`ZY[vPSà6?´Ú`=�Úp=@[.<¸ãgä�éFØ^=Q[
Wp[vÜ¼Û@ADÚp?BK@ZHÜ¼Ú`E�Ú`?BT�Ùb?B[�à ?BÜ6Üp=@I�à6K4ûQZYÛ@W`[��@é

¿�ÀÂÁ ±�ó@±.ô] ³ a�yOstivnYc¼ak��Â�qoµ

Ø^=@[.K@[�übÚ+CQEYW¼Ú(IYêXÚp=@[.ÚpWVEOKQÜ¼êíIYW`MHE�Ú`?DILK�ÚpI0Þ�[,T�IYKQÜp?UP�[�W`[kP�?UÜ6Ú`=@[,T�IYKQÜ¼ÚpWVEO?BKoÚ`ÜkéQØ�I
EYÜ`Ü¼?UÜgÚ�Úp=Q?BÜ�Ú`W`EYKQÜ¼êíIYW`MÅEOÚp?BIYK.E�Üp[2Ú>IYêFZYÛQ?BP�[kAD?BK@[vÜXEOW`[JÞ�[�?BK@Z3T2W`[kEOÚp[kP;ì�ÞQEYÜp[kP.IYK#Úp=@[^ÚgNbC�[
IOê6T2IYKFÜgÚ`W`EY?DKoÚ�ÞF[k?DK@Z�Ú`W`EYKQÜ¼êíIYW`M,[vPÆEYKQPÆ?DÚ`Ü.P�[�C�[�KQP@[�KQT�?D[vÜ3IYK!IOÚ`=@[�W�T�IYKQÜ¼ÚpWVEO?BKoÚ`Üké�-xN
êíIYW`MÅEYAD?UÜp?DK@Z4Úp=Q[kÜp[,?DÚ3?BÜ�=QIYC�[kPïÚp=@[,Ú`W`EYKQÜgêíILWpMHEOÚp?BIYK1C@W`I�T2[k[kP�Û@W`[ÅT�EOK!Þ�[ÅEYÛ�ÚpILMHE�Úp[vP
Ý¡Üp[�[&Üp[kT�Ú`?DILKv��é��Yß2éYØ^=@[^Úp=QIYÛ@ZL=LÚJC@WpI�T�[kÜ`Ü¼[vÜ�ÞF[k=@?DKFPHÜ¼ILM,[6IYêFÚ`=@[kÜp[&ZLÛ@?BP@[�AB?DK@[vÜ>EOW`[6K@I�à
P�[kÜ`T2W`?DÞ�[kP;é
!�?BWVÜgÚ`ADNLìJÚ`=@[ñ?DKFP�[�C�[�KQP@[�KQT�[ÌT2IYKFÜgÚ`W`EY?DKoÚ�à6?DABA3K@[�[vPÃÚ`IîÞ�[ñ[2ü@EOMÅ?BK@[kP;é&Ø^=@[�T2IYK@ò

ÜgÚ`W`EY?DKoÚ`Ü;à6=@?BTV=�EYC@C@ABN&Ú`I6Úp=@[¸?DKoÚp[kWpKFEOAYT�IYMÅCFILK@[�KoÚ;C@W`IYC�[�WpÚgN(IYê�ÈOABIbTkE�Ú`?DILK.Èxà6?DABAYW`[�MHEO?BK
Û@KQTV=QEYK@ZY[vPÆEOKFPÆW`[�MHEO?BKïELÜ�ÈOÛ@KQP@[2ûQK@[vP�ÈSEYÜ�K@I�?DK@êíIYW`MÅEOÚp?BIYKïIYKïP@[�C@ABI�NbM,[kKoÚ�?UÜ�NY[�Ú
âoKQI�à6K;éLØ^=@[�T2ILKQÜgÚ`W`EY?DKoÚ¸à6=Q?BTV=0CQWp[vÜpT�Wp?BÞF[vÜXÚ`=QE�ÚJÚp=@[+ADI�T�EOÚp?BIYKQÜJÜ¼=QIYÛ@AUP0P�?('�[kWJM#ÛQÜ¼ÚJÞ�[
Wp[�ò»[�ü�EYMÅ?DK@[vP�EYÜmÚp=Q[JÚgàxI+T�IYMÅC�IYK@[kKLÚVÜ�EOW`[¸K@I�ADILK@ZY[kW�P@?DW`[kT2ÚpABN3AD?BK@âY[vP�é�Ø^=@?UÜ�T�IYKQÜ¼ÚpWVEO?BKoÚ
K@[�[vP@Ü^ÚpIÅÞ�[3Û@C�P@E�Ú`[kP4ÚpIH?BKQT2ABÛQP�[�Ú`=@[3K@[kà T2ILK@K@[vT�Úp?BIYKFÜ�é

22

Ø^àJI^C�ILÜ`Ü¼?BÞ@AB[>T2IYKQK@[kT2Úp?BIYKQÜ;EYWp[�C�ILÜ`Ü¼?BÞ@AB[Yéb*¸?´Ú`=@[�W;Úp=@[¸T�IYK@KQ[kT�Ú`?DILK�?BÜ�Ùb?UE�¶�·�¸�¹`º�»|¼
IYK@ABN Ý¡EYÜ^EYADA�EOC@CQAD?UT�EOÚp?BIYKQÜJM.ÛQÜ¼Ú6T2IYMÅM#Û@K@?UT�E�Ú`[(Ùb?UE3Úp=Q[�å+<>ã>?BK0Ú`=@[+ãgäÆå T�IYKQT�[�C�Ú�ß>ILW
?´Ú¸?UÜXÙb?UE�¶�·�¸�¹`º�»|¼	EOKQP½¯�°
±�²,³s´�µ�é�!@W`IYM Ú`=@[&C�[�WVÜ¼C�[kT2Úp?BÙY[^IOê�Ú`=@[�»�°sÏ1Ñ]±Dõ4ö�³s¹JÍ�±�³s´
EOKQP4Úp=Q[ç ³\³\Ñ]ÍS¹�Ô ç ³s¹J±�´\³\Ñ�Ú`=@[3IYK@ABN:T�IYMÅCFILK@[�KoÚ6Ú`=@[�NSÜ¼[k[�?UÜ^Ú`=@[Z¶�·�¸�¹`º�»|¼�ì@=QI�à^ò
[�ÙY[kW&ZY?BÙY[kKSÚp=QEOÚ&Úp=@[�ûQKQEOAmADI�T�EOÚp?BIYKQÜ(EOW`[�ÚpIHÞ�[.P�?('�[kWp[kKLÚ+?´Ú+Üp[�[kMHÜ&ABIYZY?UT�EYA�ÚpI0?BKQT�ADÛQP@[
Úp=@[!K@[2ÚgàxIYW`âî?DKÃÚ`=@[!CQE�Ú`=;éxØ^=Q?BÜSMÅ[kEYKQÜHÚ`=QE�Ú�¶�·�¸�¹`º�»|¼ à6?BABA�EYC@CF[vEOW4Úgà6?BT�[ïELÜ
EOKbN�Ü¼[vðLÛQ[�KQT�[:IOê+[2ü�[kT�Û�Úp?BIYKÌà6?BABAx?BKbÙYILADÙL[:P@E�ÚVE1Þ�[�?BK@Z!CQEYÜ`Ü¼[vP!ÚpI÷¶�·�¸�¹`º�»|¼�ì�IYÛ@Ú
ÚpI~¯�°
±�²,³s´�µ�ì�EYKQPïÞQEYTVâ ?BK!ÚpI�¶�·�¸�¹`º�»|¼�é;ãeK!Ú`=@?BÜ�àxEzN�Ú`=@[HT2IYKFÜgÚ`W`EY?DKoÚ3?´ÚVÜ¼[kA´ê^=QELÜ
ZYÛ@?UP�[kP4Ú`=@[�ÚpWVEOKQÜ¼êíIYW`MHE�Ú`?DILK0C@W`IbT�[kÜ`Ü�é

T�IYKoÚp[�übÚ(GJIbILAD?BK@ZbGJILKoÚpW`IYA�?DKbÙ�n
ABI�T�EOÚp[LÝ}Ü¼[kA´êgé ABIbTkE�Ú`?DILKFß2ÕÆÈOÛQKQP�[2ûFK@[kP�È

T�IYKoÚp[�übÚ2"([kEYA´Ú`=Qä IYKQ?´Ú`IYW6?BKoÙ�n
ABI�T�EOÚp[LÝ}Ü¼[kA´êgé¾��ù�å(KQP�"��ýé ó&[�ÚgàJILWpâ�é¾��ù�å&KFP�"��ýétGJIbIYAB?DK@Z�GJIYKoÚpW`IYA»é ADI�T�EOÚp?BIYKFß

é�ê ADI�T�EOÚp[oÝ¡Üp[�ADêgé ABI�T�E�Ú`?DILKFß
Ø^=@[&[h'�[kT2Ú¸IYKÅÚ`=@[6Ú`?DMÅ?BK@Z.T2ILKQÜ¼ÚpWVEO?BKLÚ>?UÜ>MÅILWp[&T�IYMÅC@AB[2ü�é ç ³\³\Ñ]ÍS¹�Ô ç ³s¹J±�´\³\Ñ�à6?DABAQKQI

ADILK@ZY[kW&ÞF[,EOÞ@AB[�Ú`I:P�?BWp[vT�Ú`ADN EYTkT2[vÜpÜ^Ú`=@[ç ³\³\Ñ$ÍS¹�Ô1¸/Ðè±�Ì4Ï�±�³s´bì�Þ@Û�Ú+?BKQÜ¼Úp[vEYP�à6?BADA�ÛQÜp[�Úp=Q[
¶�·�¸�¹`º�»|¼ å+<>ã¸TkEOABAJ²�´sÍS±�°s·�Ï�ø+ù�Ñ$ÍS¹�Ô�ö�°\ÎsÎ
Ï�Ô�°bÝ}ß�Ú`I,W`[kðoÛ@[vÜgÚ6P@EOÚ`E.ÚpIÅÞF[3Üp[�KoÚxÚpIÅE
P�[2ûQKQ[kP.T�IYMÅM.ÛQK@?BTkE�Ú`?DILKQÜmC�IYWpÚké�Ø^=@[2¶�·�¸,¹`º�»|¼ à6?DABA@Ü¼[kKQP3Ú`=@[^P@E�ÚVE6ÚpI+Úp=Q[JK@[�ÚgàJILWpâ
ÛQÜ¼?BK@Z4Úp=@[�Î
°
¹`º�ú,³\û�³s´s±2Ý»ß6êíÛ@KFT�Úp?BIYKmé�ã¨Ú3?UÜ&Ú`=@[�KïÚp=Q[,�gILÞÆIOê¸Úp=@[,K@[2ÚgàxIYW`â�T2IYMÅC�IYK@[kKoÚ
ÚpI.Üp[�KQPHPQE�Ú`E3ÚpI3Ú`=@[(T2ILWpW`[kT2Ú>ADI�TkE�Úp?BIYKÅÞQELÜ¼[vPÅIYKÅÚ`=@[&C�IYWpÚ`ó&I4Ýí?BKHÚp=@?UÜ¸TkEYÜp[&Ü¼[kKQP�?BK@Z3Ú`I
Úp=@[ç ³\³\Ñ]ÍS¹�Ô�¸,Ðè±�Ì�Ï�±�³s´�ß2é�ådù4³s´
±�¯|³.E�ÚpÚpW`?DÞQÛ�Úp[�=QEYÜJÞ�[�[�K�EYPQP�[kPÅÚ`I ç ³\³\Ñ$ÍS¹�Ô1¸/Ðè±�Ì4Ï�±�³s´
êíIYW^Úp=Q[î¯�°
±�²,³s´�µS[�AB[�MÅ[�KoÚ^ÚpI0TV=@[vTVâ�é@Ø^=@?BÜ6Üp[kðoÛ@[kKQT2[�IYê�[kÙY[�KoÚVÜ^?BÜ6Üp=@I�à6KSÞF[kADI�à�n

T�IYKoÚp[�übÚ(GJIbILAD?BK@ZbGJILKoÚpW`IYA�n(n¹ùb[�KFP@ØmI�GJIbIYAB?DK@Z�*>AB[�MÅ[�KoÚzÝ}ßèn
C�ILÜ¼Ú�nFØ^?DMÅ[Yé K@I�à�é/ÕýØ^?BM,[Lé KQI�à/ì+C@Wp[îíúç
�

EYKQP���ù@å&KQP�",�üïÌà6W`?´Ú`[vù�EYMÅC@AD?BK@Zoä [kÜ`ÜpEYZY[oÝíC�IYWpÚ`ó&IFì T�Û@WVð>EOAËß

��ù@å&KQP�",�Æn(n à6W`?´Ú`[vù�EYM,CQAD?BK@ZLä1[kÜ`ÜpEYZY[LÝ¡CFILW¼ÚVó&IFì T�Û@Wëð>EYAUßhn
C�ILÜ¼Ú�nFó&[2ÚgàxIYW`âvïÁÜ¼[kKQP@Ø�IL<�IYWpÚvÝ¡CFILW¼ÚVó&IFìoT�Û@Wëð>EYAUß

ó([2ÚgàxIYW`â�n(n Ü¼[kKQP@Ø�IL<�ILW¼ÚzÝíC�IYWpÚ`ó&IFìLT�Û@Wëð>EYAUßhn
C�ILÜ¼Ú�nQ?´ê�CFILW¼ÚVó&IvÕýÜp[�ADêgétGJIoILAD?BK@Zoå(T�Ú`ÛQE�Ú`IYWvé C�IYWpÚ`ó(I.Ú`=@[�K

GJIbIYAB?BK@ZLå+T�ÚpÛFE�ÚpILW�ïÿÜp[2ÚVð>EOA¨Ý¡T2ÛQWëð>EYAUß
ã¨Ú0?BÜH?BMÅCFILW¼ÚVEOKoÚHÚp=FE�ÚHÚp=Q[�Úp?BM,?BK@ZÿT�IYKQÜ¼ÚpWVEO?BKoÚÅêíIYWÅÚp=Q[ç ³\³\Ñ]ÍS¹�Ô ç ³s¹J±�´s³\Ñ�?UÜ0Ü¼Úp?BADA

C@Wp[vÜ¼[kWpÙL[kP ELÜ&Ú`=@?BÜ+?UÜ+E4ÜpEOêí[2ÚgN�Wp[vðoÛ@?DW`[�MÅ[kKLÚvéFã¨Ú�K@I�àýEOCQC@AD?B[kÜ(ÚpI4Úp=Q[.à6=@ILAD[ÅÜ¼[vðoÛ@[�KQT�[
IOê;[�ÙL[�KoÚ`Ü¸Úp=QIYÛ@ZL=;ìoEYKQP0?BK0ILW`P�[kW>Ú`I,P�[�Úp[kWpMÅ?BK@[(?Dêm?DÚ^TkEOK0Þ�[+MÅ[�ÚJÚ`=@[+[�ü�[kT2Û@Úp?BIYKHÚ`?DMÅ[kÜ
IOêXEOABA�Úp=@[3MÅ[2Ú`=@I�P@Ü6?BKSÚp=@[�Üp[kðoÛ@[kKQT2[�à6?BADA�K@[k[kP4ÚpIHÞ�[3MÅ[kELÜ¼Û@W`[kP;é

Ü@Lý� z R�É:_N�1U`ciR1e�T�ËZO@�
Ø^=@[SûQKQEOA^AB[�ÙL[�A6IOê+M,I�P�[kADAB?BK@Zñ?DKQT�ADÛFP�[kÜHEYADAxÚp=Q[S=FEOWVP�àxEYWp[SÜ¼C�[kT�?´û�TSP@[2Ú`EY?DAUÜÅÜ¼ÛFTV=îELÜ
CF[kW¼êíILWpMHEOKFT2[3Ú`?DMÅ[kÜkì�Wp[kAD?UEOÞQ?DAB?´ÚgN�EOKFP1EOWVTV=@?DÚp[kT2ÚpÛ@WVEOA�ABEzNLIYÛ�ÚVÜ�é��[�K@[kW`EOÚp?BK@ZHÚ`=@?BÜ�MÅI�P�[�A
à6?DABA�?BKbÙYILADÙL[.T2ILKoÙL[�WpÚp?BK@Z0EOÞFÜgÚ`W`ELT�Ú+T�IYMÅCFILK@[�KoÚVÜ&?BKLÚ`I4ÜpCF[vT2?DûFT�?BKQÜ¼Ú`EYKQT2[vÜ�é�ãeKÆEYPQP�?´Ú`?DILK

23

Úp=@[.T�IYKQÜ¼ÚpWVEO?BKoÚ`Ü&T�IYKoÚ`EY?DKQ[kPS?DK�Ú`=@[�IYÚp=@[kW&MÅIbP@[�AUÜ&à6=@?UTV=�Wp[kABEOÚp[�ÚpI4EOWVTV=@?´Ú`[kT2ÚpÛ@WVEOA�AUEzNoò
IYÛ�ÚVÜ�à6?BADAJÞF[4ÛQÜ¼[vP!ÚpI1ZLÛ@?UP�[HÚp=Q[4T2ILKbÙY[�WVÜp?DILKïC@W`I�T2[vÜpÜké@!�?DZLÛ@W`[HöÆÜ¼=QI�à&Ü�E�	(ä|�/P�[2ò
C@ADI�NbMÅ[�KoÚHP�?UEOZYWVEOM à6=@?UTV=ÿ=QELÜ,ÞF[k[�KÁP@[�W`?DÙL[kP�êíW`IYM Ú`=@[�EOWVTV=@?´Ú`[kT2ÚpÛ@WVEOAxMÅIbP@[�A»é�Ø^=Q[
ç ³\³\Ñ]ÍS¹�Ô ç ³s¹J±�´\³\Ñ�EOKFPv»�°sÏ1Ñ]±Dõ4ö�³s¹JÍS±�³s´�=FEzÙY[�ÞF[k[�KSADI�T�EOÚp[vP0IYKSP�?('�[kWp?BK@Z,C@WpI�T�[kÜ`Ü¼ILW`Ükì
EYÜXP�[�ûQK@[kP,?BK.Ú`=@[6ABIbTkE�Ú`?DILK,T�IYKQÜ¼ÚpWVEO?BKoÚ�Üp[2ÚvéOãeK.ê¡ELT�ÚXÚ`=@[^ÚpWVEOKQÜpAUE�Úp?BIYK#C@W`IbT�[kÜ`Ü�=QEYÜXEYZLEO?BK
ÞF[k[�K�P�Wp?BÙY[kK0ÞbNÅÚp=@?UÜ6T2ILKQÜ¼ÚpWVEO?BKLÚvéoØ^àxI#ÜpC�[kT2?DûFT�?BKQÜgÚVEOKQT�[kÜxIOêÓ¶�·�¸�¹`º�»|¼ =QEzÙL[+Þ�[�[kK
T2W`[kE�Ú`[kP4ÚpI0ÜpÛ@C@C�IYWpÚ&Ú`=@[3êíÛ@KQT2Úp?BIYKQEYA�T�IYMÅCFILK@[�KoÚVÜ�éQØ^=Q[�K@[2ÚgàxIYW`â:EYKQP4Úp=@[.ELÜpÜpI�T2?UE�Ú`[kP
=QEOWVP�à^EOW`[�P�[kÙb?BT�[kÜ&EYWp[3K@I�àáW`[�C@W`[kÜp[�KoÚp[vP4ELÜ6C@=bN�Ü¼?UT�EYA;P�[�Ùb?UT2[vÜ�éQØ^=Q[�C@=bN�Ü¼?UT�EYA;P�[�Ùb?UT2[kÜ
EOW`[�ABI�T�EOÚp[kPSE�Ú^Ú`=@[3[�KQPSIYê�Ú`=@[3K@[2ÚgàxIYW`â�é

¿�ÀÂÁ ±hþ�± \^]V_L�´i�|Yf3]Vh�d>Â�qoµ

Ø^=@[J?BKQP�?BÙb?BP@ÛQEOAbABIbTkE�Ú`?DILK.T2ILKQÜgÚ`W`EY?DKoÚVÜmT�EYK.K@I�à�Þ�[^Û@C�P@E�Ú`[kP�à6?DÚp=.Úp=@[6ELT�ÚpÛFEOAoÙzEYADÛQ[
êíIYW>Ú`=@[�?BW>ABI�T�E�Ú`?DILK;ìYMÅ[vEOK@?BK@Z�Úp=Q[�NHT�EYK,KQI�àîÞ�[(TV=@[vTVâY[vP�éYØ^=@[(T�IYMÅCQEYWp?UÜ¼ILK,T�IYKQÜ¼ÚpWVEO?BKoÚ
EOAUÜ¼I0KQ[�[kPQÜ&Ú`I:Þ�[.Û@C�P@E�Ú`[kP�ì�W`[�C@AUEYT�?DKQZHÚp=@[,EOÞQÜ¼ÚpWVEYT2Ú(W`[�C@W`[kÜp[�KoÚ`EOÚp?BIYK IYê#¶�·�¸�¹`º�»|¼
à6?´Ú`=4Ú`=@[�ÜpCF[vT2?DûFT�?DKFÜgÚVEOKoÚp?UE�Ú`?DILKQÜ�é@Ø^=Q?BÜ^W`[kÜpÛ@ADÚp?BK@ZHT2IYKFÜgÚ`W`EY?DKoÚ&Ü¼[�Ú6?BÜ�n

T�IYKoÚp[�übÚ(GJIbILAD?BK@ZbGJILKoÚpW`IYA�?DKbÙ�n
ABI�T�EOÚp[LÝ}Ü¼[kA´êgé ABIbTkE�Ú`?DILKFß2ÕÆÈOCQWpI�TOç
È

T�IYKoÚp[�übÚ2"([kEYA´Ú`=Qä IYKQ?´Ú`IYW6?BKoÙ�n
ABI�T�EOÚp[LÝ}Ü¼[kA´êgé ABIbTkE�Ú`?DILKFß2ÕÆÈOCQWpI�T���È
ABI�T�EOÚp[LÝ}Ü¼[kA´êgé¾��ù�å(KQP�"����@é ó([2ÚgàxIYW`â�é���ù�å(KQP�",�ýçYétGJIoILAD?BK@Z�GJIYKoÚpW`IYA»é ABI�T�EOÚp?BIYKFß

é�ê ADI�T�EOÚp[oÝ¡Üp[�ADêgé ABI�T�E�Ú`?DILKFß
Ø^=@[0Ú`?DMÅ?BK@Z!T�IYKQÜ¼ÚpWVEO?BKoÚ.?UÜ#Üp?DMÅC@ABN�Û@C�P@E�Ú`[kPÌÚpIÆW`[2ëF[kT�Ú#Úp=@[�ÜpCF[vT2?DûFT:?BKQÜ¼Ú`EYKQT2[4IOê

¶�·�¸�¹`º�»|¼ à6=@?UTV= Úp=Q[ç ³\³\Ñ]ÍS¹�Ô ç ³s¹J±�´\³\Ñ>à6?BADA�T�EYADA»éQã¨Ú�?BÜ+CFIoÜpÜp?BÞ@AD[.Úp=QEOÚ(Ú`=@?BÜ(Úp?BMÅ?DKQZ

24

T2IYKFÜgÚ`W`EY?DKoÚ,T�IYÛ@AUPÿEYABÜpIïE�'�[vT�Ú,Úp=@[4ÚpWVEOKFÜgêíILWpMHE�Ú`?DILKÌ?Dê&Úp=@[SW`[kðoÛ@?BWp[vP�ÚpIYÚ`EYAJ[�üb[vT2Û�Ú`?DILK
Úp?BM,[,T2ILÛ@ABP1K@IOÚ�ÞF[#M,[�Ú(êíILW+ÜpIYMÅ[.T2ILK�ûQZLÛ@W`EOÚp?BIYKQÜ.Ýí[Yé ZQé�?DêXÚp=@[ç ³\³\Ñ]ÍS¹�Ô ç ³s¹J±�´\³\Ñ¸àxELÜ
ADI�T�EOÚp[vP4EOÚxÚ`=@[�ê¡EOW^[�KFP4IYê�E#K@[2ÚgàxIYW`âHIYW^?DêmÚ`=@[�ÜpTV=Q[kP�Û@AB[�IYK�Ü¼ILM,[�C@W`I�T2[vÜpÜpIYWVÜ>MÅ[kEYKoÚ
Úp=QEOÚ6Úp=@[�P�[vEYP�AB?BK@[3T2IYÛQABPSK@IYÚ^Þ�[3MÅ[2Ú�ß�é

T�IYKoÚp[�übÚ(GJIbILAD?BK@ZbGJILKoÚpW`IYA�n(n¹ùb[�KFP@ØmI�GJIbIYAB?DK@Z�*>AB[�MÅ[�KoÚzÝ}ßèn
C�ILÜ¼Ú�nFØ^?DMÅ[Yé K@I�à�é/ÕýØ^?BM,[Lé KQI�à/ì+C@Wp[îíúç
�

EYKQP���ù@å&KQP�",�ýçZïÌà6W`?DÚp[vù@EOMÅC@AB?DK@Zoä [kÜ`Ü`EOZY[oÝíC�IYWpÚ`ó(IQì T2Û@WVð>EOAËß

��ù@å&KQP�",�ýç�nÂn à6W`?DÚp[vù@EOMÅC@AB?DK@Zoä [kÜ`Ü`EOZY[oÝíC�IYWpÚ`ó(IQì T2Û@WVð>EOAËßèn
C�ILÜ¼Ú�nFó&[2ÚgàxIYW`âvïÁÜ¼[kKQP@Ø�IL<�IYWpÚvÝ¡CFILW¼ÚVó&IFìoT�Û@Wëð>EYAUß

ó([2ÚgàxIYW`â�n(n Ü¼[kKQP@Ø�IL<�ILW¼ÚzÝíC�IYWpÚ`ó&IFìLT�Û@Wëð>EYAUßhn
C�ILÜ¼Ú�nQ?´ê�CFILW¼ÚVó&IvÕôGJIbILAD?BK@ZLå+T�Ú`ÛQE�Ú`IYWvé C�IYWpÚ`ó(I.Ú`=@[�K

GJIbIYAB?BK@ZLå+T�ÚpÛFE�ÚpILW�ïÿÜp[2ÚVð>EOA¨Ý¡T2ÛQWëð>EYAUß

ÿ �/×ëIbÖ�Õ,I1Ib×gÓ¸Ð
�JLNM ��a�[Nelk P�e:f�ciP�É:ÉÓ[$e:k ��WZ�
GxEOC�Ú`Û@Wp?BK@Z�ÜpEOêí[2ÚgN W`[kðoÛ@?BWp[kMÅ[�KoÚ`Ü+à6?´Ú`=@?BKïÚ`=@[,M,I�P�[kAX?BÜ�[vÜpÜp[�KoÚ`?BEYA�?Dê�	+ä��î?BÜ�Ú`I4=QEzÙL[
êíÛ@ADA^Ù�EOABÛ@[:êíIYWÅP�[�ÙL[�ABIYC@?BK@ZÆÜ`E�êí[�ÚgNñT�Wp?DÚp?UT�EYAJÜpN�ÜgÚ`[�MHÜ�é:�Ã?DÚp=@ILÛ�Ú#Ú`=@?UÜ#?BK�êíILWpMHE�Ú`?DILK�Úp=Q[
M,I�P�[kA�TkEOK@K@IYÚ&ÞF[.ÛQÜ¼[vP4ÚpIHêíÛ@ABABNSELÜpÜp[kÜ`ÜxÚp=@[.?DMÅCQELT�Ú&IOê>EHTV=QEYK@ZY[Lì�MÅ[kEOKQ?DK@ZÅÚ`=@[.T�IbP@[
à6?DABA^=QEzÙY[HÚ`IïÞ�[�EOADÚp[�W`[kPÌ?DKQÜ¼Úp[vEYP�à6=Q?BTV=Á?BÜ#MÅIYW`[:[2ü�C�[�KQÜp?BÙY[4EYKQPñÚ`?DMÅ[T2ILKQÜ¼ÛQM,?BK@ZFé
å&AUÜ¼IFì�EYKQEOABN�Ü¼?UÜ(ÚpIbIYAUÜ+TkEOKïÞF[,ÛQÜp[kP Ú`ISELÜpÜp[kÜ`Ü+à6=@[2Ú`=@[�W�Úp=Q[,Ü`E�êí[�ÚgN Wp[vðLÛQ?DW`[�MÅ[�KoÚVÜ(à6?BADA
ÞF[�MÅ[�Ú&ÞoN:Úp=@[.C@WpILCFIoÜ¼[vP4ÜpIYABÛ�Ú`?DILK;éQå&ZoEO?BK;ì�Ú`=@?BÜ&=QEYÜ6MHEYKoN4CFIYÚp[kKLÚ`?BEYAmT2IoÜgÚ&EYKQP4Úp?BM,[
ÜpEzÙb?BK@ZLÜké
Ø^=@[Z�3G��Æà^EYÜxÛQÜp[kP:ÚpIHT�EYC�ÚpÛQWp[�ÜpEOêí[2ÚgN0W`[kðoÛ@?BW`[�MÅ[�KoÚ`Ü^ELÜJ?DÚ&?UÜ¸Ú`=@[�P�[�ê¡EYT2ÚpIHÜ¼Ú`EOK@ò

P@EOWVP�êíIYW%	(ä��¸é�Ø^=@[�W`[.àx[�W`[.E0KbÛ@M#ÞF[kW+IYêJP�?Dþ0T2Û@ADÚp?B[kÜ+àJ[#[�KQT�IYÛ@KoÚ`[�W`[kP à6=@[kK1ÛQÜp?DKQZ
�3G��!Úp=@ILÛ@ZY=;é4!�?DWVÜgÚ`ADNLì@Ú`=@[3ÚgNbCF[vÜ6IOê>P�[kCF[kKQP�[kKQT2?B[kÜ+P�?BÜ`T2ÛFÜpÜp[kPS?BK��@é��ÅEOW`[3K@IOÚ+EYADà^EzN�Ü
[kEYÜpN1Ú`I1P�[kÜ`T2W`?BÞF[HÛQÜp?BK@Z��3G��>ì�êíILW�[2ü@EYM,CQAD[��3G�� W`[kðoÛ@?BWp[vÜ�Úp=QEOÚ�Úp=Q[�W`[H?BÜ#EOKñ?DKoÚ`[�Wpò
ê¡EYT2[3T�IYK@K@[vT�Ú`?DILK:Þ�[2Úgàx[�[�K�T2ILMÅCFILK@[�KoÚ`Üx?BK4ILW`P@[�WJêíIYW&E,T2IYKFÜgÚ`W`EY?DKoÚxÚpI,ÞF[�Üp[2Ú6IYK:Úp=@[k?DW
C@WpILCF[kW¼Ú`?D[vÜJò>?DKSÚp=Q[�TkEYÜp[+IYê�[kMÅ[�W`ZY[�KoÚ6P�[�C�[�KFP�[�KQT�?D[vÜ^ÞF[�ÚgàJ[k[�KS?DKFP�[�C�[�KQP@[�KoÚ(Ü¼N�Ü¼Úp[kMÅÜ
Úp=@[kWp[EOW`[SK@I�Ü¼ÛQTV= T2ILK@K@[vT�Úp?BIYKFÜ�éXãeKÁÚp=@?UÜHT�ELÜ¼[�àx[�àJ[kWp[�EOÞ@AB[SÚpIñÛQÜp[SÚp=@[1T�IYMÅMÅIYK
ãgä1åýC@AUE�ÚpêíIYW`MøEYÜ(EÅÞQEYÜp?BÜxÚ`I:T2ILMÅCQEOW`[�C@WpILCF[kW¼Ú`?D[vÜ�éQù�[kT2ILKQP�ABNYì4�3G��ñ?UÜ&ÞFEYÜp[kPSIYKSÚp=Q[
ÛQÜ¼[,IOêJÚpWVEzÙY[kW`Ü`EOAUÜ6IOêxIYÞ��g[vT�Ú3ÜgÚ`WpÛFT�ÚpÛQWp[vÜ�é�õ+[�C�[�KQP�[kKQT2?B[kÜ�Þ�[2Úgàx[�[kKïT�IYMÅCFILK@[�KoÚVÜ�ì�ÜpÛQTV=
EYÜxADI�TkE�Úp?BIYKmìbP@I,KQIOÚ6=QEzÙY[(Úp=@?UÜ^W`[�AUE�Úp?BIYKFÜ¼=@?BC0Ú`=@[�W`[2êíILWp[�EOK�EOW`Þ@?DÚpWVEOW`NHP�[kT�?BÜp?DILK:K@[k[kP�[vP
ÚpIÆÞ�[SMÅELP�[:ELÜ�Ú`IÆà6=@?UTV=ÿT2ILMÅCFILK@[�KoÚ#=FEYPñÚ`=@[4T�IYKQÜ¼ÚpWVEO?BKoÚ#E�ÚpÚ`EYTV=Q[kP�é�Ø^=@?BW`P�ABNYì�Úp=Q[
Wp[kABEOÚp?BÙY[�ABN�Ü¼?BMÅC@AD[��3G��ÿT�IYKQÜ¼ÚpWVEO?BKoÚ`Ü(EOÚ(Ú`=@[,<¸ãgä AB[�ÙY[kA�Þ�[kTkEOMÅ[.WVEOCQ?BP�ABN�T2IYMÅC@AB[2ü1EOÚ
Úp=@[H<Jù@ä AB[�ÙL[�AXà6=@[kKïK@[kà T�IYMÅCFILK@[�KoÚVÜ+àx[�W`[,?DKoÚpW`I�P�ÛQT�[kP�é�ãeKñEYP@P@?´Ú`?DILK;ì�?´Ú3à^EYÜ�K@IYÚ
EOABàxEzN�ÜxIYÞbÙb?DILÛQÜ^EYÜxÚ`I,=QI�à/ÚpIHMHEYC:Ú`=@[��3G��ïêíWpILMÉIYKQ[�AUEzNY[kWxÚpI,Úp=@[3KQ[2übÚké

�JL5K t�y@T
��ciP�T�[$�4e
Ø^=@[^ÚpWVEOKQÜ¼êíIYW`MHE�Ú`?DILKQÜ�êíIYW�Ú`=@[(Üp?DMÅC@AB[6[2ü@EOMÅC@AB[6ZY?BÙY[kKÅ?DK,Úp=Q?BÜ¸CQEOC�[�W>àx[�W`[^Û@KQP�[kW¼ÚVEOâL[�K
ÞoN�=FEOKQP�ìXÞQÛ�ÚkìX[kÙY[�KÁà6?´Ú`=ÿÚ`=@?UÜ,Üp?BM,CQAD[ÜpNbÜ¼Úp[kM Úp=@[|�3G��áEOK@KQIOÚ`EOÚp?BIYKQÜ#WVEOC@?UP�ABN�?DK�ò
T2W`[kEYÜp[kP:?DKSKbÛ@M.Þ�[�W6à6=Q[�KSÚpWVEOKQÜpAUE�Úp?BK@Z#êíWpILM Úp=Q[�<¸ãgä�Ú`I,Úp=@[�<xù�ä�é�ã¨êmÚ`=@[�EOCQC@WpIoEYTV=

25

?BÜÅÚ`IÌÜpTkEOAB[SÚpI�W`[kEOA+Ü¼N�Ü¼Úp[�MHÜ,Ú`=@[�K Ú`=@[�ÚpWVEOKQÜ¼êíIYW`MHE�Ú`?DILKÁM#ÛQÜgÚ0Þ�[ÆEYÛ�ÚpILMÅEOÚp[vP�ìXCF[kW¼ò
=QEOCQÜ&ÛQÜ¼?BK@Z0E,Ú`[kTV=@K@?UðoÛ@[�ÜpÛQTV= EYÜ,�[kK@[2Ú`?BT�å(ADZLIYW`?´Ú`=@MHÜ^ÚpIH=Q[�ABCSZL[�K@[kW`EOÚp[3EHÜpIYABÛ�Úp?BIYK;é
"&I�àx[�ÙY[kWkìOT�IYKQÜ¼ÚpWVEO?BKoÚXÚpWVEOKQÜ¼êíIYW`MHE�Ú`?DILK#?UÜ¸P�?Dþ0T2Û@ADÚ>Ú`I.EOÛ�Ú`IYMHE�Ú`[Yé�!�?BW`Ü¼ÚpABNYìLà6?´Ú`=:E�=QEYKQP
à6Wp?DÚ¼Ú`[�KHEOC@CQWpIoEYTV=,CFIYÚp[�KoÚ`?BEYAQT2ILK�ëQ?UT�Ú`Ü�Þ�[2Úgàx[�[kKHT2IYKFÜgÚ`W`EY?DKoÚ`Ü�àx[�W`[6ðoÛ@?BTVâbABN.W`[kT�IYZYKQ?BÜp[kP
EOKQP�P�[vEOADÚ(à6?´Ú`=;é�ù�[kT2ILKQP�ABNYì@à6=Q[�K T2ILKoÙL[�WpÚp?BK@ZHT2ILKQÜgÚ`W`EY?DKoÚVÜ^IYK EÅAD?BK@[�ÞbN4AD?BK@[�ÞQELÜ¼?UÜkì@E
Ü¼[�Ú�IYê�T�IYMÅC@AB[2ü.T2ILKQÜ¼ÚpWVEO?BKLÚVÜ�?BÜ�Þ@ÛQ?DADÚkì�Þ@Û@Ú¸E(M#ÛQTV=,Üp?BM,CQAD[kWXZY[�KQ[�W`?BTxÜ¼ILADÛ@Úp?BIYK.MHEzN3[�üb?UÜ¼Ú
à6=@?BTV=�àxIYÛQABP!àxIYW`â êíIYW�[vEYTV=ñIOê^Ú`=@[0AB?DK@[vÜ�él!@IYW.[2ü@EOMÅC@AB[YìmÚp=@[v¯|°�±�²/³s´\µñT�IYKQÜ¼ÚpWVEO?BKoÚ
ADIbIYâb?BK@Z3E�Ú�Úp=Q[ç ³\³\Ñ]ÍS¹�Ô�¸,Ðè±�Ì�Ï�±�³s´�� ù4³s´
±�¯|³&àxIYÛ@AUP,ÞF[vT2IYMÅ[6E�AUEOW`ZY[^Ü¼[�Ú>IOêF?Dê��vÚ`=@[�K��z[�AUÜp[
ÜgÚVE�Úp[kMÅ[�KoÚ`Ü�?´ê�?´Ú�à^EYÜmT�IYKbÙY[kW¼Ú`[kP�êíILW�[vEYTV=�?BKQP�?BÙb?BP�ÛFEOA�T�EYADAoMHEYP�[JÚpI�E&C�IYWpÚ`ó&IFé�åÿÞ�[2ÚpÚp[�W
Ü¼ILADÛ�Ú`?DILK.àxIYÛ@AUP�Þ�[JÚpI�ÛQÜ¼[6E(ZY[�KQ[�W`?BTJCFILW¼ÚVó&I�T2ILADAB[kT2Úp?BIYK�ILK�Úp=Q[�¯|°�±�²/³s´\µ#T2ILMÅCFILK@[�KoÚkì
ûQADA@Úp=@[&T�IYABAD[vT�Úp?BIYK#ÞQEYÜp[kP#IYK,Ú`=@[6Ü¼C�[kT�?´ûFT^ãgäÆåÃT2IYK@ûQZYÛ@WVE�Ú`?DILK#P�ÛQWp?BK@Z�ÚpWVEOKQÜ¼êíIYW`MHE�Ú`?DILK;ì
EOKQP�Úp=@[kKÅÜp[�AB[kT2Ú�Ú`=@[6EOC@CQWpILC@Wp?UE�Ú`[¸C�ILÜ¼Ú>T2IYKFP�?´Ú`?DILK#ELT�Úp?BIYK.êíIYW�Î
°
¹`º�ú,³\û�³s´s±2Ý»ßmÞFEYÜp[kP�ILK
Úp=@[�?BK@C@Û�Ú^CQEOWVEOMÅ[�Úp[�Wvé1"&I�àx[�ÙY[kWkìYÚp=@?UÜ6EOCQC@WpIoEYTV=Hà^EYÜJK@IOÚ^ÛQÜp[kP4EYÜx?´Ú^?BKoÙLIYABÙY[vÜ¸EYPQP�?DKQZ
T2IYKFÜgÚ`W`EY?DKoÚ`Ü,Ú`IñÚp=@[ï<¸õ�ä EOKQPîMÅ[�W`ZY?BK@ZñÚp=Q[kÜp[à6?´Ú`= Úp=@[Æ<¸ãgä T2IYKFÜgÚ`W`EY?DKoÚ`ÜkìXà6=@?UTV=
àJILÛ@ABP4Þ�[�E#MÅILWp[3T2ILMÅC@AD[�ü:C@W`I�T2[kÜ`ÜxÚpIÅÛ@KFP�[�WpÚ`EYâY[3EOÛ�Ú`IYMHE�Ú`?BTkEOABADNLé
å&K@IYÚp=@[kWx?UÜ`Ü¼Û@[+à6?´Ú`=SEYÛ�ÚpILMHE�Úp?BIYK4?BÜJÚ`=QE�Ú^IOê;Ú`WpÛFÜgÚvé@Ø^=@[+ZLÛ@?UP@EOKQT�[+P�I�T�Û@MÅ[�KoÚ`ÜxêíILW

à6Wp?DÚp?BK@Z4Ü`E�êí[�ÚgNST�Wp?DÚp?UT�EYA�ÜpIOêËÚgà^EOW`[0Ý¡ÜpÛQTV=ÆELÜ+õ��(ò`ç\�\Ç�-ôæDç���èíß6Ü¼Úp?BC@Û@AUE�Ú`[�Úp=FE�Ú�EYKbN4Ú`IbIYAUÜ
ÛQÜ¼[vP!ÚpI1EYÛ�ÚpILMÅEOÚp[0P�[kÙY[kADILC@MÅ[�KoÚ�ÞF[4ðLÛFEOAB?´ûQ[vP�é�Ø^=Q?BÜ3MÅ[vEOKQÜ�Ú`=QE�Ú#?´Ú.M#ÛQÜ¼Ú.Û@KQP�[kWpZLI
Ü¼ILM,[JIOê@Ú`=@[^ÜpEYM,[¸ÚgNbCF[xIOê�Ú`[kÜ¼Úp?BK@Z�EYKQP�EYKQEOABN�Ü¼?UÜ�ELÜ;Ú`=@[^Ü¼IYêËÚgàxEYWp[>à6=Q?BTV=�?UÜ�ÛQÜp[kP3ILK�Úp=Q[
Ü¼N�Ü¼Úp[�M ?´ÚVÜ¼[kA´êgéLØ^=@[6MÅIYW`[^T�IYMÅC@AB[2ü�Ú`=@[^ÚpWVEOKFÜgêíILWpMHE�Ú`?DILK.C@W`I�T2[vÜpÜkìzÚp=@[6MÅILWp[6P�?Dþ0T2Û@ADÚ¸?DÚ
?BÜxÚ`I0T2[�WpÚp?DêíNYéFGJ[kW¼Ú`?´û�T�E�Ú`?DILKSTkEOKSÞF[�EYK4[�übÚpW`[�MÅ[�ABN0[2ü�C�[�KQÜp?BÙY[�C@W`IbT�[kÜ`Ü�ìbÞ@Û@Ú(T2[�WpÚp?DêíNb?DKQZ
Úp=@[�Ú`IoILA�?BÜ&CFIYÚp[�KoÚ`?BEYADABN:E,IYK@[3I�'ÆT2IoÜgÚvé

�JLý� ghciÉ:_NR�cdR�e�T
P�T�[N��e

�+K@[�EHT2ILM,CQAD[�Úp[3MÅI�P�[�A;=FEYÜ^Þ�[�[�K1T�Wp[vE�Ú`[kP:êíIYW(EYKSãgäÆåýÜ¼N�Ü¼Úp[�Mø?´Ú+M.ÛQÜ¼Ú(ÜgÚ`?DABA;Þ�[�?BM#ò
C@AD[kMÅ[�KoÚp[vP�ì�EYKQP!Úp=@[4T2[�WpÚp?DûFTkE�Úp?BIYKñC@W`I�T2[vÜpÜ3M#ÛQÜ¼Ú.[�KQÜpÛ@W`[ÅÚp=QEOÚ.Ú`=@[0?BM,CQAD[kM,[kKoÚ`E�Ú`?DILK
M,[k[2ÚVÜ�Úp=@[ÅW`[kðoÛ@?BWp[kMÅ[�KoÚ`Ü�?BKÆÚ`=@[HMÅI�P�[�A»émØ^=@[H<¸õ�ä ?BÜ�ÞFEYÜp[kPïIYKñå(R6ãgó�G������@ì�EYKQP
Úp=@[kWp[�EOW`[:EïKoÛQM.Þ�[�W,IOê+å+R6ãgó�G �����ïT2IYMÅC@AB?UEOKoÚ���ù�� Ü,EOABWp[vEYP�N�EzÙ�EO?BABEYÞ@AB[0IYW,ÞF[k?DKQZ
P�[�ÙL[�ABIYC�[kP�é;Ø^=@?UÜ�MÅ[kEYKQÜ�Úp=QEOÚ�CQEOWpÚ�IOêxÚp=@[HT2[kW¼Ú`?´û�T�E�Ú`?DILKïCQWpI�T2[vÜpÜ�TkEOK!ÞF[ÅC�[�WpêíIYW`M,[vP
ÞoN [kKQÜpÛ@Wp?BK@ZHÚ`=QE�Ú�Ú`=@[#KQ[�à W`[kðoÛ@?BWp[kMÅ[�KoÚ`Ü(C@ABELT2[vP1IYKïEOKÆ[�ü�?BÜ¼Úp?BK@Z:CQWpI�P�ÛQT2Ú�EYWp[.M,[�Úkì
C@WpILÞQEOÞQADN ÞbNÆ=bÛ@MHEYKïW`[�Ùb?B[�à3é`"&I�àx[�ÙL[�Wvì�Úp=@[0EYC@C@AB?BTkE�Úp?BIYKFÜ+à6?BABA¸ÜgÚ`?DABA>K@[k[kPïÚpI�Þ�[0P�[2ò
ÙY[�ABIYC�[kPñEYKQPñWp[kÙb?D[kà&P�émØ^=@[0MÅIoÜgÚ.ELT�T2[kC�Ú`EYÞ@AB[0Ü¼ILADÛ�Ú`?DILK�?BÜ3ÚpI1=QEYKQP�T2I�P�[ÅÚ`=@[�M Þ@Û�Ú
Úp=@?UÜ�=QELÜ3Ú`=@[0IYÞbÙb?BIYÛQÜ�P@?BÜ`EYP�Ù�EYKLÚVEOZL[#Ú`=QE�Ú#ÞFIYÚp=ñÚp=Q[4T2I�P�[0EYKQP!Úp=Q[0MÅIbP@[�AxM.ÛQÜ¼Ú.Þ�[
âY[�C@Ú�ÜpNbKQTV=@W`IYK@?UÜ¼[vP�é�å&KñEOADÚp[�W`KQEOÚp?BÙY[ÅEOC@C@W`ILELTV= àJILÛ@AUP1Þ�[#Ú`ISEYÛ�ÚpIYò»ZL[�K@[kW`EOÚp[.Úp=@[HEOC@ò
C@AD?UT�EOÚp?BIYK1T�IbP@[.ÛQÜp?DKQZHÚp=@[#MÅIbP@[�AUÜ�ìFÞ@Û�Úkì�?BK Úp=@[,EOÛ�Ú`=@IYWVÜ6ILC@?DKQ?DILK;ìQÚ`=@[.ELT�T2[kC�Ú`EYKQT2[.IOê
EOÛ�Ú`IOò¨ZY[�KQ[�WVE�Úp[vP:T�IbP@[+êíILW6=@?BZY=@ABN:T2W`?DÚp?UT�EOA;ÜpN�ÜgÚ`[�MHÜ6?UÜ^ADILK@ZÅàxEzNÅêíW`IYMÉWp[vEOAB?´ÚgNLé

� �ïÓJÐ(ÖJC¼Õ/Ib×gÓ¸Ð/I

Ø^=@?BÜ0CQEOC�[�WH=QELÜHC@W`[kÜp[�KoÚp[vPÁEYKîEYC@C@W`ILELTV=ÌÚpI�ÛFÜ¼?BK@ZÌä1õ&å êíILWHãgä1å�ÜpN�ÜgÚ`[�MHÜ�é>Ø^=Q[
M,I�P�[kABÜJ=QEzÙL[6ÞF[k[�K4P@[kÜ`T2W`?DÞ�[kPÅÛQÜp?BK@Z�	+ä��ÆEYKQPv�3G��>é�ùbIYMÅ[&[�übÚp[�KFÜ¼?BIYKQÜ>ÚpI.Úp=@[(ÚgNoC�[kÜ
IOê�T�IYKQÜ¼ÚpWVEO?BKoÚ`Üxà6=@?UTV=SEYWp[�?BKQT2ABÛQP�[vP:?BK:Ú`=@[3MÅI�P�[�AUÜ^àJ[kWp[�?BKLÚ`WpI�P�ÛFT2[kP;é@åÚ`W`EYKQÜ¼êíIYW`MÅEOò
Úp?BIYK�C@W`I�T2[kÜ`Ü3à^EYÜ#EOAUÜ¼I ?BKoÚpW`IbP@ÛQT2[vPñà6=@?BTV=ÌT�IYKbÙY[kW¼ÚVÜ�ÞFIYÚp=�Ú`=@[v	+ä��EYKQP!Úp=@[~�3G��

26

EOK@K@IYÚ`EOÚp?BIYKQÜ(à6?´Ú`=ïE4M,I�P�[kA}é�Ø^=@?UÜ�=QEYÜ+ÞF[k[�K!EOC@C@AB?B[kP1ÜpÛQT�T�[kÜ`ÜgêíÛQADABNSÚpI�E:Üp?DMÅC@AB[#ãgäÆå
Ü¼N�Ü¼Úp[�M�é
�Ã=@?DAUÜ¼Ú�Ú`=@[�W`[HEOW`[#MHEYKoNÆCFIYÚp[�KoÚ`?BEYAXÞF[kK@[2û@ÚVÜ�ÚpI�ÛQÜp?DKQZ�EYKïä1õ(å EOC@C@W`ILELTV= Úp=Q[�W`[

EOW`[ÅE�KbÛ@M#ÞF[kW�IOê^?UÜpÜpÛ@[kÜ�à6=@?BTV=ñK@[k[kPïÚpI Þ�[0W`[kÜpIYABÙY[vP�é;Ø^=@[H[2ü@ELT�Ú3àxEzNïä1õ&å T�IYÛ@AUP
ÞF[1ÛFÜ¼[vPÁZL?DÙL[�KÃT2ÛQWpW`[�KoÚ0T2[kW¼Ú`?´ûFTkE�Ú`?DILKîCQW`ELT�Úp?UT2[KQ[�[kPQÜÅÚpI�Þ�[1[2ü@EYM,?BK@[vPÿêíÛQW¼Ú`=@[�Wvì¸?BK
CQEOWpÚp?UT2Û@AUEOW^?Dê�Ú`IbIYAUÜ&EOW`[+ÛFÜ¼[vP:êíILW&EOÛ�Ú`IYMHE�Ú`?DILK;é
�+KÅE�M,ILWp[^Ú`[kTV=@KQ?BTkEOAQAB[�ÙL[�A»ìOà6=@?BABÜ¼Ú¸Ú`=@[%�3G���Ú`W`EYKQÜ¼êíIYW`MÅEOÚp?BIYK#êíWpILM�<¸ãgäøÚpI.<xù�ä

M.ÛQÜ¼Ú+Þ�[,EYÛ�ÚpILMHE�Úp[vPSêíIYW+Úp=@[,EOC@CQWpIoEYTV=SÚpISÜpTkEOAB[Yì@Ú`=@[,IYC�Ú`?DMHEOA�EOCQC@WpIoEYTV=�=QELÜ&NY[�Ú(Ú`I
ÞF[,?BP@[�KoÚp?DûQ[kP;é`!@Û@WpÚp=@[kW�ÚpI0Ú`=@?UÜ�ì�Ú`=@[,ÜpÛ@?DÚ`EYÞ@?DAB?DÚgN IOê��3G��ÌêíIYW�T�EOC@ÚpÛ@W`?DKQZ4ÜpIYMÅ[#IYê>Úp=Q[
Wp[vðLÛQ?DW`[kPSP�[�C�[�KFP�[�KQT�?D[vÜ�Ý¡ÜpÛQTV=�EYÜ^?BKQP�[kCF[kKQP�[�KFT2[3C@W`IYC�[�WpÚp?B[kÜVßJ?BÜ6Þ�[�?BK@ZHEYÜ`Üp[kÜ`Ü¼[vP�é
!�?BKQEYADABNYìoÚp=Q?BÜxCQEYCF[kWx=FEYÜJK@IOÚ6P�?UÜpT�ÛQÜpÜp[kP0Úp=@[�Ü`E�êí[2ÚgNÅ?BMÅCQEYT2Ú^IYê�Úp=@[�ãgä1å C@AUE�ÚpêíIYW`MSé

ùb?DKFT2[ÅÚp=Q[Hãgä1åúÜ¼IYêËÚgàxEYWp[ÅT�EYKïILK@ADNïT�EOÛFÜ¼[Å=QE�wkEOWVP�ILÛQÜ�ÞF[k=QEzÙb?DILÛ@W�IYKQT�[,?DÚ�?UÜ�CQEOWpÚ3IOê
EOKÌEzÙb?DILK@?UT�Ü.ÜpN�ÜgÚ`[�M�ì;êíÛQW¼Ú`=@[�WÅEOKQEYADN�Üp?BÜ�IOê6Úp=Q[:Þ�[�=QEzÙb?BIYÛ@WVEOA¸<xù�ä MHEzNïÞ�[:W`[kðoÛ@?BW`[kP
ÚpI [�KFÜ¼Û@W`[ÅÚp=FE�Ú.K@I KQ[�àúÜpEOêí[2ÚgNïT�IYKQT�[�W`KQÜ3EOW`[Å?DKoÚ`WpI�P�ÛQT�[kP�é�ä [2Ú`=@I�P@Ü3êíILW�[2ü@EOMÅ?BK@?BK@Z
��ùÅÛQÜ`EOZY[�EOKQP0ÞF[k=QEzÙb?DILÛ@W¸?BK4Ü`E�êí[�ÚgNÅT�Wp?DÚp?UT�EYA�ÜpN�ÜgÚ`[�MHÜJ=QEzÙY[+ÞF[k[�K:CQWpI�P�ÛQT�[kP1æ ��è�à6=@?UTV=
T2IYÛQABP4ÞF[�ÚVEO?BADILWp[vP0êíILW6ÛQÜp[3à6?´Ú`=4Ú`=@[�ä1õ&åýEYC@C@W`ILELTV=;é

� ;@9V;mÒ�;mÐ(Ö�;lI
�v�&·¸½Jº��6lJ�	��
������������������� �������������! "�$#%��&'��(*)+ ,�-����.���($.0/�����)%(1#�����)+��2�/436587:9:;k��·J]pcgivhba�nL¿
dgstr�a��F½Jav¶Ysti�º»hLrv�tuF�=<:<�>��

? �(µA@úl�]Vho�va�cg�t]Sa�hb¶ñ·ô�6hba�_o_F� ² i2Ç�a�c¼¶Y{Å�6l�ÄCB�½ ² �EDC)*����FG(4)H3I����)%�!�1�E5J��KL�"FG��)%(
 "���-)%����)pu ?�M <O�:N M <k�PO�Qz�:<Ou ? �v� ? �

M �&Â��Ll�ikhof+|3akhb¶#q@�Ll�cgi�ik��¿}\^a�Ç>�Ostho{V��·îq�|L{¨dg]`f�a�dgstr�äLc¼a�f3]`Ç�i�cg��jUi�cXd ³]x·J{e{e]V{e{ef3]Vh�dXi�j
�x_�]pc¼a�dgstho�JqO|Y{¨dg]Vf3{V��º}h0 ��$#)%��RS5T(%�U�����*�:�: ,R��*��)%K6�' ,R�KV�W���*�1FGK�uVæ a�ceÇ>str¼��u2wx��uèäL]VÀLcgnoa�ce|
? �v��QL�

QL�(�xÀOÈ¨]`r`dXµÅa�hba��v]Vf3]Vh�d�XJcgivnL_F�Qµ,\J·YXxnLsD¶Y]Z@�]`cg{estikhÅ�v� �Y� ²]`r ³ hostr�ak�Ycg]V_�ikced�u�µÅaV| ? �k� M �
�O��æ[XJ¿�\v�:Bvqol ? �v� æ�i�cg�YsthL� XJcgikno_Q� µ,iO¶Yno�´a�c ·JyOstivhostrV{V�
³ dedg_]N B�B2ÇXÇXÇ6� cedgr�aO� i�cg��B2rVivf3f^B2{er ? �k�Y� ak{e_Qu ? �v��QY�

\Y�6½Æ�^aVÇ>�Ostho{Vuvº ² i�|YhFuvakhb¶+º ô a�dg]k�@·Jh3·¸_o_Ycgizakr ³ dgi6\x]V{est�vhosthL�(qLa�jB]`d»|�l�cgs¹dgstr�ak�@q�|Y{¨dg]Vf3{
nL{estho�Xd ³]mwxhLstÊo]�¶&µ,iO¶L]`�´�tstho�xÄ�a�ho�vnoak�k]v��º»h!5T(��1�����*�:�� �R��*��)%K6�`_S)%
�)��a�%�,Kb)%�,�]&`�1�Uced�fgD;u
? �v� M �

>O� ² � Â����6]`�´�¹|��#·¸cg�knostho�HqLa�jB]`d»|:¿x·ýqO|Y{¨dg]Vf�a2dgs´r�·J_o_Ycgiza�r ³ dgi:µÅakhba��vstho�:qYa�jB]`d»|�l�ak{e]V{
Â ³ � \���d ³]V{est{V� ²]Vr ³ hostr�a���cg]V_�ikced�u�\x]V_ba2cedgf3]Vh�d+i�j6l�ikf3_onYdg]`c3qOrVst]Vhor`]vu;wxhLs´yv]`cg{es¹d»|�i�j
~�ikcg���tu@�<�<:<Y�

h �&·�6�t]V_o_�]3a�hb¶ji�æ a2cgf3]`c�� ßJà dg]`hb¶LsthL�Å�6l�Äïdgi#º»hLrV�tnb¶L]�·Jr`dgstivhL{V�^D)4����FG(*)k3l����)%�0�U�
5J��KV�"FG��)%(l �����)%����)pu�Ä¨�=< M <
Å%N Q:Qz�O�Qz�k�Yu ? �k�v�O�

<Y�&·Á�6�´]`_o_�]vu,i�æ a�cgf3]pc�uba�hb¶�æ ô a�{¨d��Lf!_Z�nmJo%���a���1��)*.�pVqrc,)+fj�.�)��s_+(%�U
�)%�t��($��cG�1��)4�=u
��FG(4)vrwx(4���������%)S����.Swy($��K6�U�=)p��·J¶o¶Lst{eikhL¿]æ�]V{e�t]`|�uOÊLcg{¨d>]�¶Ls¹dgstivhQu ? �v� M �

�V�Y�l�nXÃÄF]Vyz]`{eivhF�y "�$#)%&'��(4)p��·J¶o¶Lst{eikhL¿]æ�]V{e�t]`|�u��=<:<v�O�
�k�v�6\+� iY��Â;nof�jBcg]p|��kqrc,)+wx(%�U����� ���z)4.0_S)%�*�z{��|�$#^5J��KL�"FG��)%(S �R��*��)%K} ��$#)%��R0���"�:� R���)%�g�JÂ ³ \
d ³]V{est{Vuo\x]V_ba2cedgf3]Vh�dXikj�l�ikf3_onLdg]pc¸qYrVst]VhLrV]vuowxhostyz]pcg{estd}|�ikj�~�ikcg���tu ? �v�k�Y�

� ? �&·&�@½xak¶�È»]Vhoi2yOstrvu�½&� ä��FÂ�akst�v]vu�Â���l�ikhof(|�uQµ4��æ�ak�t�´akrV]ku�a�hb¶|iY��µ,rV\x]`cgf3s´¶Q��·Jh:º»hLjBikce¿
f�a2dgstivh0µ,iO¶Y]V��jUi�c^�Js´� ³ ¿¡º»h�dg]V��cgs¹d»|#½J]�a��¹¿ ² stf3]+qO|Y{¨dg]Vf3{V��º»h~ �)*�*���".b2LqW�V ��g��(4���$c��%�
���gfj�.�)���u1_l(��1
�)%�HmxKk��)4.�.�)4.b ,R�����)%KS�gu ? �k��QY�

� M �6½ ² l�·>¿ ß wx½¸�6l�· ß �FqOikjDd»ÇXa2cg]6l�ikho{es´¶L]`c¼a2dgstivho{>º}h�·Js¹cgÀ�ikcghL]6qO|Y{¨dg]Vf3{�akho¶ ß ¾�nost_Lf3]Vh�d
l�]pcedgstÊor�a�dgstikhH\&�J¿g�P> h ô B ß \x¿g� ? ô � ²]Vr ³ hostr�a��Qcg]`_�ikced�uL½ ² l�·Áakho¶ ß wJ½¸�6l�· ß u@�<:< ? �

��QL�Ii,æ a�cgf3]pcXakho¶#·Ì�6�t]V_o_�]k�lqrc,)0�Z�1�P)4���L5J���,�*��(4���U�,�`Dr���G{�F��{�)%p	wy(4)4���1��)Vfj�.�)�� �1�G{0&`�1�Uc
d�fgD��m·x¶o¶Yst{eivhL¿]æS]V{e�t]`|�uOÊocg{¨d>]�¶YstdgstikhFuQ�<:<�<Y�

27

A Lightweight Approach to Critical Embedded
Systems Design Using UML

Michaela Huhn, Martin Mutz?, and Bastian Florentz?

TU Braunschweig
Institute for Programming and Reactive Systems

{huhn,mutz,florentz}@ips.cs.tu-bs.de
http://www.cs.tu-bs.de/ips/

Abstract. We present a pragmatic approach to the UML-based design
of critical systems that we are applying successfully in the automotive
domain. We concentrate on so-called lightweight formal methods [14]
like automated static analysis and validation of dynamic behaviour by
simulation, but the approach can be strengthened to fully formalised
analysis of models. Our method is supported by a tool that interoperates
with a number of commercial CASE tools used in industry.

1 Introduction

Model-based CASE tools and in particular UML tools [15] are widely applied in
the development of critical systems. However, in critical systems design, deeper
analysis of the static and dynamic properties of the models is needed. To ensure
the correct operation of a critical system, quality assurance has to provide ade-
quate evidence that the system under design satisfies safety, timing, and other
kinds of criticality requirements.

A lot of work has been done to improve the development of critical systems
by the rigorous use of formal methods. This work has shown splendid results in
pioneer projects. But already in 1996, J. Wing stated that the applicability of
formal methods in industrial projects is strictly limited by the enormous costs
[14]. Costs result from personnel training, the formal specification and verifica-
tion process itself, and tools that have to be tuned for nearly each particular
setting.

Some obstacles against formal methods could be overcome due to the fact
that UML has become a well accepted de facto standard in industry:

– UML is familiar to a huge community of software developers.
– Compared to most other notations previously accepted in industry, UML has

to be classified as a semi-formal notation. Moreover, the graphical models
can be underpinned by textuell expressions (e.g. OCL, Object Constraint
Language) to achieve a more formal description.

– UML-based tools for the specification, design, and analysis are available.
? The work of these authors was partially funded by the Volkswagen AG, Wolfsburg.

28

Consequently, many research groups work on formalising UML or parts of the
notation (see [16, 24, 7]) to adopt it to critical system design. But as long as there
is no agreement on a formal semantics of UML1, industry hesitates to introduce
formal methods for similar reasons as before (see e.g. [4]).

– Many approaches are based on semantics that are tuned for the underlying
formal method. Even if the semantics conforms to the UML standard, only
in rare cases the semantics is compatible to one of the leading UML tools
preferred in industry.

– Formal methods capable of solving industrial sized problems are usually op-
timized for a specific analysis domain like timing behavior, safety, or security.
Since large scale applications often incorporate different kinds of criticality
requirements, the user has to work with several formal approaches (and re-
late the results appropriately) to achieve a sufficient coverage in validation.

Thus, the knowledge of the software experts has grown in the last years. But the
efforts of specification and verification and the tool support, which is still poor
from an industrial point of view, make formal methods still prohibitive in many
industrial projects.

This review of the situation is disillusioning but coherent with the observa-
tions made by many others [8, 4, 20].

To improve product quality in practice and to increase the acceptance of
formal methods, we took a partial approach as suggested in [14]:

– Many severe problems in model-based development can already be identified
by partial analysis techniques like static analysis of the models or systematic
simulation.

– To make analysis economically feasible, the specification and analysis process
must be automated as much as possible.

In this paper we present a pragmatic approach for the analysis of UML
state diagrams. State diagrams are heavily used for behavioural modelling in
the design of embedded systems, and modelling errors in state diagrams cause
a significant portion of faults. One reason is that the semantics of state dia-
grams is not really simple, in particular, if a set of objects is interacting in
large systems. To make things worse, large scale embedded applications like in
automotive or railway industries are developed with a number of CASE tools.
Software engineers work simultaneously with models from different development
environments. Even in case only UML is used, the tools show subtle differences
in syntax and semantics. Thus, to guarantee understandability and consistency
of models is a high priority requirement to improve model-based design. To ad-
dress these problems companies have established style guidelines and catalogues
of modelling rules and patterns [1] and also many UML tools offer some rudi-
mentary consistency checks specified by the OMG [21]. However, so far these
style guides are at most an advisory aid.
1 or a set of formal semantics, each adopted for a particular application domain

29

We go one step further in our systematic, automated, and tool independent
approach to build formalised rule catalogues and to check whether a state-based
design adheres to a specified catalogue of rules. Moreover, to deal with the sub-
tle behavioural differences of state diagrams in the various UML versions, we
use a statechart simulator SC-Simulator that offers different semantics. Thus,
the user can choose the handling of events, non-determinism, etc. Thereby, the
same statechart can be simulated according to a standard UML semantics, the
semantics of a particular CASE tool, or the user’s preferred variant.

The rule-based static analysis of state diagrams is described in Section 2.
Section 3 deals with the simulation of state diagrams with different semantics.
Section 4 concludes.

2 Static Analysis of State Diagrams

The first part of our approach is concerned with the automated static analysis
of UML state diagrams [21]2 with respect to user-defined modelling rules. The
approach is supported by a tool called Rule Checker which does not depend on
a specific development environment and can handle a fairly good selection of
statechart variants commonly used in automotive industries. We have realised
an amount of modelling rules taken from existing rule catalogues [1] to anal-
yse static properties. Design rules expressing widely accepted ”best practice” as
well as individual preferences can be checked automatically on different state-
chart notations. Models can be analysed with respect to their conformance to a
standard and their compatability to other CASE tools.

static
properties

Compatibility
Rules

Rule Checker

SC-Simulator

dynamic
propertiesRhapsody Ascet-SD Stateflow

XMI XML MDL

Statechart

Design
Rules

Consistency
Rules

UML
Semantics

Classic
Semantics

User
defined

Fig. 1. The context of automated analysis

2 but also other state based formalisms like Harel’s statecharts [11], MAT-
LAB/Simulink/Stateflow charts [17] or Ascet-SD state machines [6]

30

2.1 Checking Static Properties of Statecharts

We defined and implemented more than 100 modelling rules in student theses
[23, 3] that can be checked using static analysis techniques on a structural rep-
resentation of a state diagram (see Section 2.2). To keep track of the rules, they
are grouped into three categories:

Compatibility Rules: Unfortunately, model exchange between different
CASE tools is not possible so far, because many tool providers developed propri-
etary variants. To overcome this situation, we have rules to analyse a statechart
with respect to its compatibility with different state-based tools. On the one
hand, we analyse whether a model contains only elements specified in the UML
standard [21]. On the other hand, we define rules to identify model elements
that are not compatible with other CASE tools. Examples for this rule type are:

– Terminator-connectors from Rhapsody [13] are not supported by UML. There-
fore, they should be avoided.

– The horizontal ordering of concurrent regions determines the execution or-
dering in some tools (e.g. in ARTiSAN Realtime Studio [2]). That should be
avoided because other UML tools do not support this feature.

Consistency Rules: Consistency rules check the syntactically correct usage
of modelling elements in a statechart. A violation of these rules causes serious
trouble in the execution of the statechart. Most commercial UML tools check
at most a subset of the well-formedness rules which are recommended by the
OMG. Examples for consistency rules are:

– The content of a guard must be syntactically correct. To check this, a parser
for guard expression is included in the Rule Checker.

– A join state must have at least two incoming transitions and exactly one
outgoing transition. Whereas in a fork state it is vice versa.

Fig. 2. Well-formedness rule for final states: Java vs. OCL

Design Rules: In difference to consistency rules, design rules are concerned
with less critical aspects of a model. The positioning of states and labels, the
direction of data flow, and other aspects to improve homogeneity and readability
are addressed in design rules. Examples for design rules are:

31

– The transition labels should be positioned left hand from the flow direction.
– The initial state should be located in the upper left corner of a composite

state and the init-transition should be attached on the left side of the state.

Additionally, we search for hints on behavioural problems that can be recog-
nized on structural properties of the statechart like miracle states (states with-
out incoming transitions, but outgoing ones), useless regions, or mistaken entity
names.

Most rules are implemented in Java. But we also implemented a module to
support the declaration of rules in the standard format OCL (Object Constraint
Language) [21]. In OCL rules can be expressed more directly in terms of a high
level logical language and the user does not need to have detailed knowledge on
Java programming and the internal data structure of the Rule Checker. In Figure
2 the declaration of a rule in Java and OCL is compared. The example refers to
the OMG well-formedness rule on final states, namely a final state cannot have
any outgoing transitions.

2.2 Using the Rule Checker

To analyse a statechart as depicted in Figure 3, the diagram is imported in the
Rule Checker. The statechart models part of a power window. It contains typical
modelling errors like a missing initial state in a compound state and a miracle
state.

Figure 4 shows a screenshot of the Rule Checker’s main window. In its upper
right part the window provides a hierarchical tree representation of the state-
chart, which is deduced from its internal data structure via so-called higraphs
[12]. It clearly shows the hierarchy of states and pseudo-states and the resulting
dependencies. This representation is independent from the positioning or scaling
of model elements in a CASE tool. Additionally, it allows for a comparison of
structural similarities between statechart models. In our tool the tree represen-
tation is used to present the statechart to the user during the analysis process
and to mark states causing a rule violation.

On the left hand side of the main window the result of the analysis is pre-
sented to the user as a list of violations found in the model. The list is sorted
due to the relevance of violation (error, warning, proposal). If the user selects a
rule violation in the list, the node in the tree representation will be highlighted
by an arrow. Additional analysis results on the faulty node will be offered in a
pop-up window if the user double clicks on the rule violation.

In the bottom part of the Rule Checker’s main window, user and system calls
are logged. During a run of the Rule Checker, the rules are listed in the order
they are checked on the model.

Configuration of statechart analysis is one of the main capabilities of the
Rule Checker. How to select or deselect rules manually and how to decide, which
rules should be considered, is illustrated in Figure 5 and Figure 6.

To improve applicability, the Rule Checker can be easily configured and ex-
tended in several directions:

32

Fig. 3. Statechart with modelling errors

Fig. 4. Main window of the Rule Checker

33

Fig. 5. Selecting modelling rules

Fig. 6. Parameterising modelling rules

34

– The rules are grouped in catalogues so that the user can activate and deac-
tivate rules according to his/her needs (see Figure 5). Moreover, predefined
rule catalogues like checking conformance to the UML standard are provided.

– Many rules can be instantiated by parameters. Working with generic rules
keeps the catalogues concise and makes analysis more efficient because a
number of checks can be executed in one step (see Figure 6).

– By realising another interface, the Rule Checker can be connected to other
CASE tools with their own proprietary statechart variant.

– To extend the set of rules, the user may implement a new modelling rule in
Java or OCL.

With respect to UML, the Rule Checker only supports the import from Rhap-
sody [13] and our own proprietary editor at the moment, which is due to the
fact that many UML tools provide XMI export but the interfaces are not at all
compatible. As soon as the problems on the tool suppliers side are resolved, in-
terfaces from other tools can be implemented easily. However, the rule catalogue
implemented so far contains already a number of rules that refer to other tool
environments like ARTiSAN Realtime Studio [2].

In difference to our Rule Checker, other tools like the prototype GDC [18]
or the commercial tool mint [22] only cover limited spots of the field:

– By the script language both tools are restricted to a particular system plat-
form.

– Function queries and access to the internal representation are mixed up.
– Rules are static, i.e. they cannot be modified at runtime or/and have no

parameters for a flexible handling.
– Rule checking is realised only for models of the MATLAB/Simulink/Stateflow

family.

The USE tool [25] deals with UML class diagrams and OCL to express system
specifications. UML Object diagrams can be tested against this specifications.
The Rule Checker uses OCL to specify rules for state-based models. Therefore,
the USE tool and the Rule Checker cannot be compared directly.

We aim for a more general and flexible approach which provides interfaces to
various UML tools and also supports other state-based models relevant in auto-
motive like MATLAB/Simulink/Stateflow charts and Ascet-SD state machines.
Consequently, our analysis is based on a generalised structural statechart repre-
sentation with the expressive power to capture the features of various statechart
formalisms.

3 Validating the Dynamic Behaviour

Since our approach aims for the analysis of state-based models originating from
different development environments, a validation of the behaviour should be
based on that semantics that is implemented in the original CASE tool. In the
case of UML tools, nearly each tool exposes its particular interpretation of the

35

UML standard with subtle differences in syntax and semantics. For instance,
ARTiSAN Realtime Studio and Rhapsody differ with respect to the execution
order of concurrent regions and the implicit priorities assigned to transitions.
Thus, rebuilding the semantics of some tool is a tedious business. But recently
several authors started to work on formalising the semantics of tools most rel-
evant in practice (see [10] for Rhapsody and [9] for MATLAB), and also many
tool suppliers provide good support.

By simulation, the developer can detect errors, analyse the behaviour of
models partially, and investigate whether the models behave as expected. But in
contrast to rigorous formal approaches, error-freeness cannot be proven. How-
ever, using the Rule Checker for static analysis in a first step, the developer is
directed to conspicuous parts of the model which should be analysed in more
detail.

Another application of a configurable simulator is to compare the model’s
behaviour under different semantics. Thereby, the designer gets valuable insights
how the same model will behave in different development environments.

3.1 Building a Modular Semantics

We aim for a simulator that can be configured to different statechart semantics.
We have chosen a modular semantics to realise this goal. Each module con-
cerns an orthogonal semantic aspect like the handling of events, in particular
their ordering, or the priority of transitions with respect to their hierarchical
position in the statechart, which is a substantial difference between the original
statechart semantics by Harel [11] and the UML semantics. The main mod-
ules are the EventSemantics, the ActionSemantics, the StateSemantics, the
TransistionSemantics, and the StepSemantics. Each main module is com-
posed of a number of submodules to handle particular aspects of the semantic
entity, for instance the module EventSemantics contains among other the mod-
ules CompletionEventSemantics, and DeferEventSemantics. As long as a stat-
echart formalism can be modularised according to this scheme, it can be rebuilt
by implementing the specific semantic choices in the corresponding modules.

To configure a statechart semantics, a collection of semantic modules has
to be selected that covers all entities ocurring in the model to be simulated.
Exchanging a module will result in changes in the semantics and therefore in a
modified behaviour of the statechart.

3.2 Using the SC-Simulator

The simulation can be run independently from the Rule Checker with its own
GUI (graphical user interface), which is shown in Figure 7. Statechart models
can be imported using the Rule Checker’s importer or a proprietary editor.

The simulated model is represented graphically with the usual features of a
simulator like highlighting the current global configuration. Detailed information
on the current configuration is provided in the four lists on the right side of the
simulation main window. The upper left list contains the events invoked by the

36

Fig. 7. The simulation main window

statechart or its environment and not yet consumed or dispatched. The upper
right one shows the current values of the variables in the model. These values
are part of the current configuration of the model. The lower left list contains all
events invocable by the environment (i.e. external events) and not yet selected.
The right list contains the events for invocation in order of their selection. To
get a deeper understanding on the execution of steps, the user may analyse the
log file that contains a detailed textual description of each micro-step that has
occurred (see the bottom area in Figure 7). This feature makes implicit semantic
variations explicit to the user.

Such implicit semantic variations can lead to unpredictable behaviour as we
observed when we compared the semantics of different UML tools in detail: For
instance, according to the UML standard, completion events are generated just
after completing a state. However, completion of a (compound) state is inter-
preted differently in different tools. For instance, we observed that in case of
a complicated situation with interlevel transitions and concurrent regions even
developers who were quite experienced with UML were not able to predict the
behaviour, in particular regarding a specific tool. When such a difficult situation
is observed, one should think about a structural characterisation of the problem.
In the example, this would be the combination of concurrent subregions, com-
pletions events, and interlevel transitions in a subchart. In a further step, the
structural characterisation could be the basis for a new modelling rule because
modelling a situation in which a clear understanding of the behaviour is missing

37

Fig. 8. The Semantics Selector to configure the semantics

should be avoided. Such a feedback from the dynamic analysis will improve the
static analysis of models in future.

The feature of configuring the semantics is illustrated in Figure 8. The se-
lection window contains a tree representation of all available semantic modules.
A description of all these modules is provided. The selection of modules in the
actual semantics can be displayed and modified as well. Furthermore, sets of
modules forming a complete statechart semantics, as e.g. the Rhapsody seman-
tics, can be stored.

4 Conclusion

We presented a lightweight approach to the correct design of embedded sys-
tems for which the state-based behavioural modelling is a predominant task.
Our work aims for the automated detection of design errors in a model-based
development process by means of static analysis and simulation. Thereby, we

38

are able to verify a broad spectrum of properties like consistency, conformance
to the UML standard, and compatibility to domain specific modelling styles but
also properties relevant to the dynamic behaviour like miracle states, dead code,
etc. The simulation is used to validate the behaviour, in particular in those parts
of a model that have been identified as conspicuous by the static analysis. As
experience shows, errors are more likely in such areas.

Our approach is tailored for an immediate improvement of state-based mod-
elling in present industrial settings. Therefore, our report can also be considered
as an experience report on formal methods at work.

At the present status, our tools do not provide rigorous formal verification
functionality like model checking, but it helps the designer to efficiently over-
come at least two common problems in model-based design of large systems [20]:
Understandability and consistency of models are improved, which is crucial in
large development teams. The attention of the developer is drawn to conspicuous
modelling situations that need further investigation.

Our approach was developed in close cooperation with the electronic design
and vehicle system integration of the Volkswagen AG. It was validated in a
medium sized industrial case study (more than 1000 states) [5], namely a power
window for the Volkswagen AG. The Volkswagen AG applied for a patent for
the kernel of the Rule Checker. However, some parts are still under development.
But the Rule Checker and SC-Simulator are runnable tools, which are already
helpful increasing the quality of state-based models.

In future we plan to extend our approach in several directions:

– We will consider also structural UML diagrams.
– Based on the simulator, we plan to implement state space exploration which

will establish formal verification at least for classical safety properties and
small models.

– The static analysis of models is executed on a structural representation which
cannot only be used for static analysis but also to measure a design with re-
spect to model metrics. Metrics also give valuable hints about which parts of
a model should be subject of a more rigorous analysis. In [19] we investigated
metrics concerning the number and structuring of states, the complexity of
transitions, and the layout of a statechart to measure readabiblity and com-
plexity of state diagrams.

References

1. S.W. Ambler. The Elements of UML Style. Cambridge University Press, 2003.

2. Artisan. http://www.artisansw.com/products/professional overview.asp, 2004.

3. K. Chkhihvadze. Erstellung von Modellierungsrichtlinien für das UML-Tool Arti-
san. Studienarbeit, TU Braunschweig, Institut für Software, May 2004.

4. S. Cigoli, P. Leblanc, S. Malaponti, D. Mandrioli, M. Mazzucchelli, A. Morzenti,
and P. Spoletini. An experiment in applying UML 2.0 to the development of an
industrial critical application. In [16], pages 19–34, 2003.

39

5. K. Diethers and M. Mutz. Improving software development in the automotive
area through tool supported modelling and formal analysis. In System Design
Automation (SDA), pages 81–88, 2002.

6. ETAS. http://de.etasgroup.com/products/ascet sd/, 2004.
7. S. Graf and J. Hooman. Correct development of embedded systems. In Euro-

pean Workshop on Software Architecture: Languages, Styles, Models, Tools, and
Applications (EWSA), Lecture Notes in Computer Science, 2004.

8. K. Grimm. Software technology in an automotive company - major challenges. In
Proceedings of the 25th International Conference on Software Engineering. IEEE,
2003.

9. G. Hamon and J. Rushby. An operational semantics for Stateflow. In Fundamental
Approaches to Software Engineering (FASE), volume 2984 of Lecture Notes in
Computer Science, pages 229–243, 2004.

10. D. Harel and H. Kugler. The Rhapsody semantics of statecharts (or, on the exe-
cutable core of the UML. In Integration of Software Specification Techniques for
Application in Engineering (CHARTS), Lecture Notes in Computer Science, 2004.

11. D. Harel and A. Naamad. The statemate semantics of statecharts. ACM Trans-
actions on Software Engineering Methods, 5(4), October 1996.

12. D. Harel and G. Yashchin. An algorithm for blob hierarchy layout. In Advanced
Visual Interfaces, pages 29–40, 2000.

13. I-Logix. www.ilogix.com/products/rhapsody, 2004.
14. D. Jackson and J. Wing. Lightweight formal methods. IEEE Computer, 29(4),

1996.
15. M. Jeckle. http://www.jeckle.de/umltools.htm, 2004.
16. J. Jürjens, B. Rumpe, R. France, and E. B. Fernandez, editors. Critical Systems

Development with UML. TU Munich Technical Report TUM-I0323, 2003.
17. Mathworks. http://www.mathworks.com/products/prodoverview.shtml, 2004.
18. M. Moutos, A. Korn, and C. Fisel. Guideline-Checker. Master thesis, TU Esslingen,

2000.
19. M. Mutz. Metriken und Regeln für eine durchgängige und modellbasierte SW-

Entwicklung im Automobilbereich. In 2. Workshop on Automotive Software Engi-
neering, 2004. to appear.

20. M. Mutz, M. Huhn, U. Goltz, and C. Krömke. Model based system development
in automotive. In SAE World Congress 2003. Society of Automotive Engineers,
2003.

21. OMG. OMG Unified Modeling Language Specification, 2003. Version 1.5.
22. P. Gilhead and R. Tarragon. Style matters, 2004. http://www.ricardo.com/mint.
23. S. Pietsch. Automatische Überprüfung von UML Statecharts anhand definierbarer

Design-Regeln. Master thesis, TU Braunschweig, Institut für Software, March
2003.

24. The precise UML group. http://www.cs.york.ac.uk/puml/publications.html, 2004.
25. P. Ziemann and M. Gogolla. Validating ocl specifications with the use tool—an

example based on the bart case study. In Thomas Arts and Wan Fokkink, editors,
Electronic Notes in Theoretical Computer Science, volume 80. Elsevier, 2003.

40

Exploration games for

safety-critical system design with UML 2.0

Jennifer Tenzer?

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh

Abstract. UML has its origin in mainstream software engineering and
is often used informally by software designers. Critical systems on the
other hand are usually specified very precisely and frequently require
formal verification. In this paper we introduce the idea of using games
to traverse smoothly from an informally defined design in UML to one
that is verifiable. The modeller repeatedly plays an exploration game
to detect flaws and to find out where he has to be more precise. The
incrementation of the design in response to these discoveries is part of
the game. We discuss exploration games with UML 2.0 activity diagrams
and state machines on the example of a small critical system. Moreover
we give a brief summary of the planned tool support for this approach.

1 Introduction

Safety-critical systems may cause injury or death to human beings when they fail.
Therefore their design needs particular attention with respect to the fulfilment
of critical safety requirements. Formal methods for the verification of a system
against its requirements are common tools for improving safety. However, the
application of formal verification techniques becomes difficult if the system is
modelled in UML, because UML is often used informally.

In this paper we introduce exploration games as technique for making a UML
design model more precise with the help of the human designer. The driver for the
incrementation of the model is the requirements specification, which is usually
very detailed in the case of critical systems. The designer plays a game to look at
the design from different perspectives and to add more detail where necessary.
At any point he can decide to play the game in “strict mode” to verify parts of
the model. During the verification the designer may discover flaws in the model
or realise that the model is too incomplete to be verified, which leads to further
exploration of the design. The exploration by playing games continues until the
designer believes that the model is precise enough for his purpose.

At the moment none of the existing UML design tools provides much support
for design exploration as suggested here. Advanced tools like Rhapsody [11] or
Real Time Studio [10] allow the interactive animation of behavioural diagrams,

? Email: J.N.Tenzer@sms.ed.ac.uk Fax: +44 131 667 7209

41

turnOn()
turnOff()

Alarm
<<Interface>>

Clock

<<Interface>>

getReading():int

<<Interface>>
Blood Sensor

deliverInsulin(dose:int)

<<Interface>>
Insulin Pump

sensoralarm

cumulativeDose: int
compDose: int

maxSingleDose: int

Controller

pumpclock
init()

Fig. 1. Class diagram for the insulin pump system

but they cannot point the user to flaws in the design and do not permit modi-
fications of the model while the animation is running. These tools do not help
the user to decide whether a design is suitable, to improve it, or compare it to
other solutions. The motivation for applying games to UML is to develop tool
concepts which help to fill this gap. This idea has first been introduced in [14]
on a general level.

Here we focus on the definition of the games with UML 2.0 activity diagrams
and state machines and consider this approach with respect to safety-critical
systems. We assume that the reader is familiar with UML, in particular with
UML state machines and the object constraint language OCL. In this paper we
use the terminology and notation of UML 2.0 [17] and OCL2.0 [7].

The following section introduces the example of a critical system design which
we will use throughout this paper. We point out problems in the design which
can be discovered and solved by an exploration game. In section 3 we give a short
summary of the exploration game framework. Section 4 explains how exploration
games are applied to design with UML. Two game variants based on activity
diagrams and state machines are considered in detail. Section 5 briefly describes
how exploration games with UML can be supported by a tool. Section 6 discusses
related work and in section 7 we conclude and point out possibilities for future
work.

2 Motivation

As motivating example we consider parts of the control software for an insulin
pump. This example is based on a case study used in [13]. The insulin pump
system is a safety-critical system which delivers regular doses of insulin to di-
abetics to reduce the patient’s sugar level. Figure 1 shows its components in
the form of a UML class diagram. Here we assume that the interfaces of the
hardware components are fixed. The structure of the Controller is variable and
has to be defined by the designer. The class diagram contains a first version of
the Controller class.

We assume that the designer has access to a detailed requirements speci-
fication for the system. As starting point for designing the system he chooses

42

���
���
���

���
���
���

Read sensor

n1:

Act1: Compute and deliver insulin dose

n2:

Analyse reading Compute dose

n3: n4:

Deliver Insulin

Fig. 2. Activity diagram modelling the normal operation of Controller

to model the basic functionality of Controller by a UML activity diagram as
shown in figure 2. The diagram is defined informally and on a high level of ab-
straction. The nodes are labelled by n1, n2, . . . in order to allow easier reference
later in this paper. The activity diagram itself is labelled by Act1. The modeller’s
task is now to make this model more precise and add information according to
the requirements specification.

In this example we concentrate on the safety requirement that the computed
dose should never exceed the maximum single dose. Using the information in
the class diagram this can be specified more formally by an OCL constraint:

context Controller

inv: self.compDose <= self.maxSingleDose

We assume that the modeller identifies that action Compute dose is con-
strained by this requirement and refines it by the activity diagram in figure 3.
This preliminary version does not cover all cases that are relevant for the system
adequately. For example, the diagram does not model what should happen if the
sugar is sugar level is low. What the designer has in mind is to model the choice
between two different algorithms depending on the analysis of the last sensor
reading. The result of the selected algorithm is stored in attribute compDose of
Controller. If we choose to interpret the invariant for Controller strictly1, the
current design is not correct with respect to the requirements. If one of the algo-
rithms yields d>maxSingleDose as result, the constraint does not hold. A simple
solution to this problem is to insert an action node before n8 which adjusts the
value to which compDose is set such that it fulfils the safety condition.

The design also leaves open many possibly important details. Some of the
open design questions that the modeller might ask himself are the following:

– What should happen if none of the conditions at the edges emerging from
the decision node hold?

– Should there be postconditions for the algorithms which guarantee that the
return value d is in a specific range?

1 UML does not specify whether an invariant must hold during the execution of an
activity. For activities that represent methods it is not sensible to request this because
the object is in an unstable state during the execution. However, for activity diagrams
on a high abstraction level involving actions performed by different objects a strict
interpretation may be appropriate.

43

���
���
���

���
���
���

[SUGAR_OK & LEVEL_RISING]

d:intd:int

[SUGAR_LOW]

n5:

n6: n7:

n8:

Act2: Compute dose

n9:

[SUGAR_HIGH & LEVEL_FALLING]

Algorithm for
SUGAR_OK

compDose=d

Algorithm for
SUGAR_HIGH

Fig. 3. Activity diagram Compute Dose

– Can an algorithm fail? If so, how do we recognise failure and what should
happen in this case?

– In the description of the system it is mentioned that a low sugar level is
dangerous for the patient. The sugar level can be increased by eating some-
thing. Should the system suggest this to the user? Does the requirements
specification consider this case or is it possibly incomplete?

Some of these questions may be answered by the requirements specification.
Where this is not the case the designer has to come up with a solution. Playing
an exploration game with the design encourages the designer to ask himself some
of these questions, and also to experiment with possible answers.

3 Summary of the exploration game framework

In this section we give a brief informal explanation of the exploration game frame-
work. Exploration games are extensions of verification games (for an overview
on verification games see, for instance, [16] and [3]) where the moves have pa-
rameters and possibly informally defined preconditions. Exploration games are
played between two players called Verifier and Refuter. Whenever we refer to
one of the players specifically we use the female form for Verifier and the male
form for Refuter. The aim of Verifier is to show that the system on which the
game is based fulfils a certain property, Refuter’s aim is to show that this is not
the case.

An exploration game is set in an arena, which is a directed graph that consists
of positions as vertexes and moves as edges. A position usually represents the
current state of the system and an edge a state transformation. Each position is
owned by one of the players. A move has a parameter signature and is labelled by

44

p5:V

m3

m4

p4:Rp0:R{x1}

m6(x2:Integer)

{x2}

m7[x2=0]

p2:V

p1:V

p3:V

m7[x2>0]

m5[isLegal?]

m2(x1:Boolean)

m1

Fig. 4. Arena of an exploration game

a name, precondition, and parameter assignment. An example arena is shown
in figure 4. For reasons of presentation we abstract from the inner structure
of the positions and from the concrete parameter assignment in this summary.
The sets at the positions indicate which parameters are “in scope” and part of
the position’s inner structure. For all positions where no set of parameters is
attached there are no parameters in scope. The positions of Refuter are shown
as grey-shaded rectangles, which are labelled by the position name and R. Those
of Verifier are represented by unfilled rectangles and contain V in the label.
The preconditions for moves are shown within square brackets. If there is no
precondition specified for a move we assume that it is true.

An exploration game is defined by an arena, an initial position, a set of
winning conditions and a set of rules. As an example we consider a game with
the arena shown in figure 4. We choose position p0 as initial position and assume
that x1 has the value false. We define that Refuter wins if position p3 is reached.
All other plays, including infinite plays, are won by Verifier. The rules of the game
are that a player makes all moves which emerge from positions that are owned
by him and provides the parameters for these moves. A player wins a play if
one of his winning conditions is fulfilled or his opponent cannot make another
move. Moreover an independent Referee decides about preconditions which are
informally defined, such as, for instance, isLegal?.

An exploration game can be played in strict mode without any exploration.
In this case the players move exclusively as shown in the arena, starting from
the initial position. At each position the preconditions at the moves that emerge
from it are evaluated. If a precondition is informally defined the Referee decides
whether it is true or false. The moves whose preconditions are evaluated to
true are the legal moves from this position. The player who owns the current
position chooses a legal move and provides parameter values for it.

45

Now let us consider some example plays. If Refuter chooses m6 from the
initial position p0 and provides 0 as value for x2 Verifier has to respond by
move m7 to position p5 because this is the only legal move. Since Verifier cannot
move anymore from p5 Refuter wins this play. If Refuter always selects m1 from
position p0 and Verifier always responds by choosing m2 we have an infinite play
which is won by Verifier. Finally, assume Refuter chooses m6 and provides 3 as
value for x2 such that Verifier is forced to move to p4. The Referee declares that
isLegal? is evaluated to true and Refuter can move to position p1. If Verifier
selects m3, Refuter wins the play because position p3 is reached. If Refuter is
clever, he plays as described in the first example, because he then wins the play
under all circumstances. His choice of moves describes a winning strategy in this
case.

If the game is played in exploration mode, one of the players is allowed to
“cheat” in various ways in order to improve his chances of winning the game. We
call the player who is allowed to cheat the Explorer, the other one the Defender.
In addition to the moves in the arena the Explorer can either backtrack to
an earlier position, change the current position, or make a metamove which
changes parts of the game definition. A metamove modifies the arena, including
the guard conditions at moves, the winning conditions or the set of rules. Since
the game definition is modified while the game is played, a play is now a sequence
of positions and game definitions. A play is always continued according to the
current game definition. If the Explorer backtracks to a position p he travels back
in the play history. Thus the game will be continued under the game definition
that was the current one at p. Backtracking is extremely useful if the Explorer has
made a mistake earlier in the play and wants to correct it. It is often necessary for
the Explorer to combine backtracking and metamoves if he wants to be successful
in his exploration. Changing the current position in a play permits “what-if”-
explorations where the Explorer can pretend that the last move resulted in a
different position. We will see later that a move like this is particularly useful
for refining the inner structure of a position if parts of it are undefined.

Again we consider some examples. If Refuter applies his winning strategy,
Verifier loses at position p5. If Verifier is the Explorer she can spoil Refuter’s
winning strategy at this point by adding a new move from position p5 to p4 to
the arena. Instead of being stuck, Verifier can now escape from position p4. If
this new variant of the game is played in strict mode, Verifier wins all plays.
Either Refuter is stuck at position p4 if the Referee evaluates isLegal? to false,
or the play is infinite.

Now let us assume that Refuter acts as Explorer in the new game which
was the result of Verifiers exploration. He may begin the play by a metamove
that changes the winning conditions. Refuter defines that a play during which
position p3 is reached is no longer won by him. Instead he declares that he wins
all plays in which move m2 has been made. Refuter will now try to force Verifier
to make this move and selects m1 which leads to position p1. Unfortunately
Verifier selects m3 and m4 as next moves. Refuter realises that it depends on
the decision of the Referee whether he will be able to get back to position p1,

46

which is the source of m2. Hence he makes another metamove and changes
the precondition at m5 to true. Refuter can now safely move to p1. However,
Verifier still is allowed to choose between m2 and m3 at position p1. Assume
Verifier chooses m3 and m4 again. Refuter realises that he has to prevent this
move sequence because Verifier can enforce an infinite loop by it. He changes the
rules of the game such that he is now allowed to select the next move at position
p1. At position p1 he chooses m2 and wins the play. In fact, the last metamove
which gave him the power to decide about the next move at p1 would have been
enough to reach this aim. If Refuter prefers a simpler model, he could backtrack
to the initial position and game definition, and then make this metamove again.
If this variant of the game is played in strict mode, Refuter wins all plays if he
plays rationally, i.e. there exists a winning strategy for him.

By repeated exploration the players add more detail to the game definition.
If they focus on making the preconditions of moves more precise, the Referee
may not be needed anymore at some point. In this case the exploration game
amounts to a verification game if it is played in strict mode. If Verifier has a
winning strategy for the game, the property which is expressed by the winning
conditions holds. The winning strategy can be regarded as a formal proof of this
fact.

4 Exploration games with UML

There are several possibilities for applying the exploration game framework to
UML. The basic idea is to use the UML diagrams for the definition of the
arena and OCL constraints as winning conditions. Our motivation for using
these games for UML is to extend tool support for design with UML, which will
be discussed further in section 5. If the game is played with a tool the Explorer
has to be controlled by the human designer, because the exploration requires
knowledge about the system and some “intelligence”. Exploring in the roles of
Refuter and Verifier provides different views on the design.

Here we focus on exploration games with UML which are played over a fixed
set of objects2. For the examples in this section we use an object a of Alarm, and
c of Controller. A position always contains a system snapshot which specifies
the current configuration of each object. An object configuration does not have
to be complete. It does not have to contain a value for all structural features
and links, but may leave some parts undefined. Furthermore it is not required
that each class is represented by an object. An example system snapshot S1 with
configurations for a and c is shown as UML instance diagram in figure 5.

The changes of object states over time are modelled by behavioural diagrams
and form the moves of the game. How exactly moves and positions are defined
depends on the diagram types that are considered. In the following sections we
will discuss activity diagrams and state machines. The definition of metamoves

2 If we allow object creation and destruction, we have to ensure that the state space of
the arena does not become infinite by introducing boundaries on how many objects
may exist at the same time for each class.

47

c:Controller

compDose=undefined

cumulativeDose=0

maxSingleDose=4

a:Alarm
alarm

Fig. 5. System snapshot S1

also differs with respect to the diagrams that are used. A common property of
games with UML is that a metamove never affects the arena directly. Instead
the UML diagrams are modified which induces changes in the arena. Changing
the OCL invariants, which represent the winning conditions, or the rules of the
game are metamoves which are not diagram-specific. They can always be made
by the Explorer and we refer to them as general metamoves.

4.1 Activity diagrams

In an exploration game which is based on activity diagrams each position consists
of the following parts.

– A system snapshot.
– The set of activities which are running with their markings.
– The set of parameters which are in scope with their assignments.

The marking specifies on which nodes of the activity diagram data and con-
trol tokens are placed. Notice that we only consider single execution of activities
here, which means that for each invocation of the activity a separate marking
is recorded. All positions where no activity is executing belong to Refuter, all
other positions to Verifier. The parameters which are in scope at a position are
the data tokens that exist at this time. Figure 6 shows an excerpt of the arena
for a game based on Act1 and Act2 which we will discuss further. Refuter owns
position p0 and all other positions belong to Verifier.

Refuter can only move by invoking an activity which is modelled by an ac-
tivity diagram. Verifier can move by moving tokens or executing an action in
one of the running activities if the action has all necessary control and data
tokens. Thereby an action may cause the invocation of other activities like Com-
pute dose in our example3. Verifier may also complete an activity if all tokens
are consumed or an activity final node is reached. The execution of an action
changes the marking of the activity according to the UML semantics and may
also affect the object configurations within the positions. If an action is infor-
mally specified, like Read sensor in our example, the snapshot after its execution
is undefined.
3 Here we assume that Compute dose is a synchronous call action. That means the

execution of Act1 is only continued after Act2 is completed. UML also permits asyn-
chronous call actions.

48

execute
Read sensor

[SUGAR_HIGH &
LEVEL_FALLING]

move control to n7

execute
Algorithm for
SUGAR_HIGH

invoke Act1

Parameters

S1 Act1: control at n1

ActivitiesSnapshot

none

...

execute
Compute dose

Activities

Act2: control at n5
Act1: control at n3

undefined none

Parameters

Activities Parameters

none
Act1: control at n3
Act2: control at n7

undefined

[SUGAR_LOW]

Activities Parameters

none
Act1: control at n3

undefined

Complete Act2

Activities Parameters

undefined Act1: control at n4 none

EXPLORER: change current position

Activities Parameters

S1
Act1: control at n3
Act2: control at n7

none

d=2 d=10

Snapshot Activities Parameters Activities Parameters

Act1: control at n3Act1: control at n3
Act2: control at n8

d at n8
Act2: control at n8

d at n8
S1 d=10S1 d=2

execute
compDose=d

execute
compDose=d

Activities

Act1: control at n3

Act2: control at n9

move control to n9

Act2: control at n9
Act1: control at n3
Act2: control at n9

Activities

compDose=2
...

compDose=10
... none

ParametersParameters

none

WIN for Refuter

Snapshot

Snapshot Snapshot

...

Snapshot

...

...

...

Snapshot

Snapshot

Snapshot Snapshot

p1:V

p2:V

p3:V

p4:V

p5:V

p6:V

p9:V p10:V

p0:R

p7:V {d} p8:V {d}

Snapshot Activities Parameters

S1 none none

Fig. 6. Excerpt of an arena based on Act1 and Act2

For each move by which the marking of the diagrams is changed, the guards at
activity edges define the precondition of the move. The parameters are specified
by the output pins of actions because values of these types are present as data
tokens after the action has been performed. We assume that each parameter
is available at the succeeding positions until the corresponding data token is
consumed. For example, parameter d is in scope at position p7, but not anymore
at p9, because the corresponding token was used during the move.

49

Refuter wins a play of the game if Verifier cannot make a move, fails to
provide parameter values for a move, or if an OCL invariant is violated. All
other plays are won by Verifier. For our example we use the OCL invariant
expressing a safety condition for compDose which was specified in section 2. As
initial position of the game we choose p0. The excerpt in figure 6 shows some of
the positions which are reachable from this position.

The Explorer in an exploration game for activity diagrams may make
diagram-specific metamoves as follows.

– Add or delete activity edges.
– Add or delete activity nodes. If a node is deleted, all edges of which this

node is a source or target are deleted as well.
– Modify guard conditions at activity edges.
– Change an action.
– Add or delete an activity diagram.

In addition to that he can make general metamoves, change the current position
or backtrack at any time as for every exploration game.

We consider some plays of our example game. First assume that Refuter is
the Explorer and changes the rules of the game such that he decides about the
legality of informal preconditions at all moves. With this setting it is easy for
Refuter to win. The preconditions of all moves emerging from p2 are informally
defined, and Refuter can declare that none of them holds. In that case Verifier
is stuck and Refuter wins the play. Verifier may counter with an exploration
during which the adds an else-branch to the decision node n5. Alternatively she
might think about the other cases which are not yet covered and introduce new
branches and appropriate actions for them. Another possibility is to make the
guard conditions more precise, such that they can be evaluated automatically
and it is not Refuter’s responsibility to decide whether they hold.

In another exploration Refuter changes the current position at position p5.
He specifies that S1 should be the snapshot within the current position. The
change is indicated in figure 6, where p6 is is the new current position selected
by Refuter. There is now a value defined for singleMaxDose which is part of the
winning condition for Refuter. Refuter changes the rules such that he provides a
parameter value for d if one of the two algorithms is executed. If he sets d>4 he
wins the game because the OCL invariant is violated when compDose is set to
d. An example of a winning position for Refuter is p10 in figure 6. The removal
of this flaw could be attempted in another exploration by Verifier.

4.2 State machines

UML provides two different kinds of state machines called behavioural state
machines and protocol state machines. In the context of exploration games be-
havioural state machines are used in a similar way as activity diagrams. They
serve to build up the arena and model how the configuration of objects changes
over time. Protocol state machines on the other hand can be used to restrict

50

���
���
���

���
���
���

Error

H Normal

Warning

Off
init()

init() error/alarm.turnOn()

repaired/alarm.turnOff()

Running

warningrepaired

���
���
���

���
���
���

Off

On

turnOn()turnOff()

AlarmController

Fig. 7. State machines for Controller and Alarm

Refuter’s choice of moves. We first consider the two behavioural state machines
in figure 7 as example. Notice that the state machine for Controller is non-
deterministic and that the event repair can have different effects depending on
which state the object is in.

A position always consists of the following parts.

– A system snapshot.
– For each object

• a “copy” of the state machine of its class and the current state configu-
ration, and

• an event queue.

All positions where the event queue is empty belong to Refuter, all others to
Verifier. For our example we choose a position where a and c are in their default
states as initial position. Furthermore we assume that c can access a via role
name alarm, i.e. the two objects are linked, and that the event queue is empty.

Refuter can move by generating an event that is put into the event queue
of the object(s) at which it is targeted. The parameters of an event are used as
parameters for the corresponding move. Verifier has to fire a state machine tran-
sition which is triggered by the first event in the queue for each object. The state
configurations of the objects change according to state machines. The guard con-
ditions at the transitions constitute the preconditions of Verifier’s moves. Firing
a transition may cause other events if an effect is specified. Firing the transi-
tion from Running to Error, for example, generates a new event turnOn() which
is put into the event queue of alarm. According to the UML run-to-completion
semantics the Controller object only completes the transition to state Error
when the processing of this event is completed. Until that point the object is in
an undefined state.

The winning conditions of the game are induced by requirements as before.
For our example we use the following requirement: if the controller detects an
error the alarm must be turned on. This can be expressed by an OCL invariant:

context Controller

inv: self.oclIsInState(Error) implies alarm.oclIsInState(On)

51

�����
�����
�����
�����

�����
�����
�����
�����

Error

Off

init()

init()
Running

error

repaired

Controller {protocol}

error

Fig. 8. Protocol state machine for Controller

Verifier also loses a play if she cannot fire a transition in response to an
event. This can happen because there is no transition triggered by that event,
the target object is undefined, or none of the guard conditions at the triggered
transitions are fulfilled. In UML events which do not trigger a transition are
simply discarded. However, since we consider critical systems here, we use a
stricter definition4 and make the game more difficult for Verifier. If we consider
our example game Refuter can win very easily at the moment. He just has to
generate an event which does not trigger a transition. For example, he can win
by generating error when c is in state Off or Error. In order to restrict the choices
of Refuter a protocol state machine can be defined. For our example we use the
protocol state machine shown in figure 8. If Refuter violates the protocol he loses
the game.

The Explorer in an exploration game based on state machines can make the
following metamoves:

– Add or delete a transition between two existing states.
– Add or delete a state. All transitions which point to or emerge from a state

that is deleted are also deleted.
– Change a guard or effect at a transition.
– Add or delete a state machine (either a protocol or behavioural state ma-

chine).

Let us first consider an exploration where Refuter is the Explorer. He changes
the rules such that he can resolve the nondeterminism for the transitions trig-
gered by init. He challenges by generating init and declares that the transition to
Error has to be taken. After this move the invariant is violated because a is still
in state Off, and Refuter wins the game. During the next play Verifier might act
as Explorer. She can then add an effect alarm.turnOn() to the transition. Refuter
can still win by generating init() and error. This sequence does not violate the

4 This definition is problematic with respect to recursive calls. An object may be in an
undefined state when an event arrives and cannot react to it. A detailed discussion
of this problem can be found in [15]. Here we do not consider recursive calls.

52

protocol and Verifier cannot fire a transition for error if c is in state Error. Verifier
might explore again and add a loop transition triggered by error to solve this
problem.

5 Tool support

A UML design tool which is based on exploration games should help the human
designer to set up a game, manage different versions of the design model, and
store important information such as the play history. During a play, the tool
fulfils different functions. First of all it should ensure that the game is played
according to the current rules and evaluate preconditions of moves which are
formally defined. The human modeller should be able to decide in which roles
he wants to perform during a play. For example, he could act both as Verifier
and Refuter, and the tool then merely helps him to set up and administrate the
game.

Alternatively the tool can try to act as one of the players. How good the tool
can play depends on how precise the model is defined and whether the tool can
compute a winning strategy. However, since decisions about informally defined
parts and exploration require knowledge about the system and design skills, we
do not expect that the tool can act as Referee or Explorer. These decisions will
probably always be made by the human designer.

In practice the design model will usually lead to an infinite arena. The tool
can try to build up the part of the arena that is currently needed from the initial
position and change it when necessary (e.g. after a metamove or change of the
current position). In order to avoid infinite sets of parameter assignments, the
modeller can be asked to provide a small set of test samples for each parame-
terised move.

We are currently working on tool support for exploration games with state
machines as introduced in section 4.2. Instead of defining formal OCL constraints
we expect the user to fill in a pattern for the kind of winning condition he wants
to specify. For example, he has to define which state combinations lead to a win
of Refuter in case of a reachability game like the one considered in our example.
This simplification allows people who are not familiar with OCL to use the tool.
We would like to read in preliminary design models as XMI files such as created
by the Poseidon UML tool [8]. The model is then manipulated by the game tool
and can be exported back to XMI at any point.

6 Related work

The tools HUGO [4] and vUML [6] help the designer check general properties of
UML state machines, such as the possibility for deadlocks. HUGO additionally
verifies whether desired (or undesired) behaviour specified by UML interaction
diagrams can be realised by state machines. Both tools translate the UML model
into a formal model which is then used as input for the model checking tool SPIN.
A general overview on how model checking can be used for debugging UML

53

designs is given in [1]. An example of a tool which validates OCL constraints
over system states specified by a collection of objects and links is USE (UML-
based Specification Environment) [12].

The approaches mentioned here differ from ours in two respects. First, they
do all require a UML model as input which is precisely defined. Informal guard
conditions, undefined object attributes and non-deterministic state machines
are usually not permitted. Second, they concentrate on the evaluation of a UML
model, while our exploration games are focused on interactive modification of
the design.

Since the UML semantics is not formally defined, there is a certain degree
of freedom in the interpretation of a UML model. There is a large amount of
work on formalising UML to make its semantics more precise. Usually these
approaches focus on a particular part of UML. For example [2] concentrates on
activity diagrams and [5] on state machines. A good overview on publications in
this area can be found on the webpage of the Precise UML Group [9].

7 Conclusion and future work

In this paper we have presented how exploration games can help to make the
design of a critical system in UML 2.0 more precise. The modeller repeatedly
plays exploration games to find out if the model fulfils the requirements and
his expectations. He has to act as Referee whenever the model does not provide
enough information to continue the play. If he wants to change the game he
has to act as the Explorer who is allowed to make metamoves. Most of the
metamoves are made indirectly by changing the UML design model. The designer
can experiment with the design and verifies parts of it while he is playing the
game. He can focus on the most critical parts of the system in his explorations
and check them against safety conditions given in the requirements specification.

On the game-theoretical side we have to investigate in future work to which
extent a tool can play the role of one of the players. Since we would like the tool
to play as best as possible we have to develop algorithms for the computation
of winning strategies. Another interesting question is how far the interaction
between the modeller and the tool can go. For instance, there might be situations
where the tool can suggest metamoves or improve its strategy by asking the user
for more information.

Concerning the connection between games and UML, further possibilities for
using the different diagram types could be examined. For example, we have not
considered combinations of state machines and activity diagrams in this paper.
In fact, state machines can invoke activities in various ways, and activities can
generate events which trigger state machine transitions. Another possibility is to
take interaction diagrams into account. These diagrams could be used to specify
both legal and illegal sequences of events which restrict the moves of Refuter. In
contrast to protocol state machines interaction diagrams allow the formulation
of event sequences for a set of objects, not only for a single object.

54

Acknowledgements

I would like to thank the DEGAS (Design Environments for Global ApplicationS
– IST-2001-32072) project funded by the FET Project Initiative on Global Com-
puting, the DIRC (Interdisciplinary Research Collaboration in Dependability –
GR/N13999/01) project funded by the UK Engineering and Physical Sciences
Research Council, and the Informatics Graduate School for their support.

References

[1] Maŕıa del Mar Gallardo, Pedro Merino, and Ernesto Pimentel. Debugging UML
designs with model checking. Journal of Object Technology, 1(2):101–117, July-
August 2002.

[2] R. Eshuis and R. Wieringa. A real-time execution semantics for UML activity
diagrams. In Fundamental Approaches to Software Engineering, FASE’01, volume
2029 of LNCS, pages 76–90. Springer, 2001.

[3] Erich Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite

Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.
[4] Alexander Knapp and Stephan Merz. Model checking and code generation for

UML state machines and collaborations. In 5th Workshop on Tools for System

Design and Verification, FM-TOOLS’02, Report 2002-11. Institut für Informatik,
Universität Augsburg, 2002.

[5] D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics
of UML statechart diagrams. In Proceedings of Formal Methods for Open Object-

Based Distributed Systems, FMOODS’99, volume 139 of IFIP. Kluwer, 1999.
[6] J. Lilius and I. Paltor. vUML: A tool for verifying UML models. In Proceedings

of Automated Software Engineering, ASE’99. IEEE, 1999.
[7] UML 2.0 OCL Final Adopted specification, October 2003. Available from the

OMG at http://www.omg.org/uml.
[8] Poseidon for UML, version 2.3.1. Available from Gentleware at http://www.

gentleware.com.
[9] The precise UML group. Website at http://www.cs.york.ac.uk/puml/.

[10] Real Time Studio professional, version 4.3. Available from Artisan Software at
http://www.artisansw.com.

[11] Rhapsody, version 5.0. Available from I-Logix at http://www.ilogix.com.
[12] Mark Richters and Martin Gogolla. Validating UML models and OCL constraints.

In Proceedings of the 3rd International Conference on the Unified Modeling Lan-

guage, UML’00, volume 1939 of LNCS, pages 265–277. Springer, 2000.
[13] I. Sommerville. Software Engineering. Addison Wesley, Seventh edition, 2004.

The insulin pump case study is also described in various documents at the book’s
webpage at http://www.software-engin.com/.

[14] P. Stevens and J.Tenzer. Games for UML software design. In Formal Methods for

Components and Objects, FMCO’02, volume 2852 of LNCS. Springer, 2003.
[15] J. Tenzer and P. Stevens. Modelling recursive calls with UML state diagrams.

In Proceedings of Fundamental Approaches to Software Engineering, FASE ’03,
volume 2621 of LNCS, pages 135–149. Springer, April 2003.

[16] W. Thomas. Infinite games and verification. In Computer Aided Verification,

CAV’02, volume 2404 of LNCS. Springer, 2002.
[17] UML 2.0 Superstructure Final Adopted specification, August 2003. Available from

the OMG at http://www.uml.org.

55

Supporting Confidentiality in UML:

A Profile for the Decentralized Label Model

Rogardt Heldal1, Steffen Schlager2, and Jakob Bende1

1 Chalmers University of Technology
SE-412 96 Göteborg, Sweden
heldal@cs.chalmers.se
2 University of Karlsruhe

Institute for Logic, Complexity and Deduction Systems
D-76128 Karlsruhe, Germany

schlager@ira.uka.de

Abstract We present a way of incorporating a decentralized label model
into the UML by defining a profile which is the built-in extension mech-
anism of the UML. Our profile permits specifying confidentiality of data
in UML by offering annotations for classes, attributes, operations, val-
ues of objects, and parameters of operations. The profile also supports
generation of Jif (Java information flow) code and the Jif compiler guar-
antees that the specified confidentiality constraints are not violated. Our
approach is appealing in the sense that it offers the possibility to con-
sider confidentiality in UML and that the obtained code is guaranteed
to behave correctly.

1 Introduction

Our philosophy is that it should be convenient to consider security issues dur-
ing the system development process, and that security should be automatically
verifiable at code level. Addressing both of these aspects is important in order
to build a secure software system.

The UML [25] has become the de facto standard for the development of
object-oriented software systems in industry. There are several reasons for this:
it is relatively easy to understand and to learn and it offers several views on a
system giving a good overview on its architecture. We aim to make it possible
to consider security issues1 during the industrial development process—so UML
is a suited starting point.

One of the main problems with UML is that the focus has been more on
functionality than on constraints such as security. In this paper we adapt the
UML by defining a profile offering security annotations for a seamless integration
of security aspects into a UML-based development process. But how can the

1 In this work we concentrate on confidentiality. “Security” has a lot of other aspects,
like e.g. authenticity, data integrity, non-repudiation, access control, or availability
which are not considered here.

56

required rigor for handling security be obtained? Here, language-based checkers
play an important role where security information is derived from a program
written in a high-level language during the compilation process and is included
in the compiled object. This extra security information can take several forms,
e.g. a formal proof or type annotations. There have been several overview papers
in this area, e.g. [17,27,26].

Our UML profile (addressing the specification of secure systems) is intended
to be used together with a language-based checker to validate that the code
really satisfies the security constraints. We decided to use the Java information
flow (Jif) system [21,22]. Jif handles a large subset of the object-oriented2 lan-
guage Java [11] but also contains some additional language constructs, e.g. to
control the propagation of confidential data. The Jif type checker guarantees
that confidential data can only leak in a controlled manner. What kind of data
is allowed to leak should already be part of the specification3. A prerequisite for
that is, of course, that the specification language supports such constraints. It is
important to notice that UML diagrams cannot be validated on the same level
as code. The code is needed to consider for example indirect information flow [8]
and covert channels [18].

In standard security models, like the Bell-LaPadual model [2] and the Biba
model [4], the security policy is separated from the code. In this respect Jif differs
since the policy is incorporated into the code in form of labels, implementing
a decentralized label model [23,21]. Data is annotated with labels that specify
the ownership and read permissions. The Jif type checker guarantees that the
confidentiality policies declared in the labels are not violated.

The decentralized label model gives fine-grained control of data based on
decentralized labels. So, it can be guaranteed that a program working with con-
fidential data propagates information only in a controlled manner. Other ap-
proaches, like e.g. access control [3], give you all or nothing: they help to prevent
information release but do not control information propagation, i.e. do not con-
trol how a program distributes confidential data that it is allowed to read. Also
not suited for many applications is the sandbox model which e.g. is used for the
execution of Java applets that can be downloaded from the internet. It prevents
access to data outside the sandbox which is often too restrictive.

Java is not adequate for developing programs which require tight control of
confidentiality. That is why we use Jif instead. Similarly, UML is not suited for
specifying such programs. That is why we have previously created an extended
version of UML called UMLS [12] (UML for Security). UMLS is also based on
the decentralized label model. The purpose of that work was to demonstrate
that the combination of model-based and language-based security is compelling.
However, we did not extend UML in the standard way by defining a profile. This
has serious drawbacks: UMLS is not UML-compliant, general UML tools cannot

2 Object-orientation is important because the UML is tailored to the development of
object-oriented systems.

3 In fact, this information should already be identified during the analysis phase since
the customer usually knows exactly which information has to be kept confidential.

57

be used and the interchangeability of models is harmed. The aim of this paper is
to offer support for confidentiality in UML by casting UMLS in a UML profile.

In order to obtain an implementation from the model that satisfies the se-
curity constraints, Jif code skeletons can be generated automatically. A type
checker then can automatically verify that the (manually) added implementa-
tion does not violate the specified confidentiality constraints. In this paper, we
concentrate on class diagrams but the profile can be extended to the other di-
agram types considered in UMLS (interaction diagrams, use cases, and activity
diagrams).

Structure of the paper. In Sect. 2 we shortly present the decentralized label
model. The built-in extension mechanism of UML is introduced in Sect. 3. Our
security profile UMLsProfile is defined in Sect. 4 where we also show some ex-
amples and discuss the profile. In Sect. 5 we mention related research before we
draw conclusions and point out future work in Sect. 6.

Due to space restrictions we do not give an introduction to Jif. Rather, we
introduce Jif bit by bit when needed. For more information on Jif, the reader is
referred to [21,22].

2 Decentralized Label Model

The decentralized label model [23] is a security model that improves existing
models by allowing users to declassify information in a decentralized way and
by supporting fine-grained data sharing. Its main elements and ideas—labels,
constraints, and declassification—are shortly explained in the following.

2.1 Labels

The central element of the decentralized label model is the label. Labels are used
to annotate data in order to guarantee confidentiality—they specify ownership
and read permission of data helping to control the propagation of (confidential)
data.

Jif is an extension of the Java language [11] implementing the decentralized
label model. In this paper we will incorporate the decentralized label model into
UML, so UML can be used for deriving Jif code skeletons.

A label consists of a possibly empty set of policies where a policy consists
of a list of principals (e.g. users, groups, or roles). Each policy has a dedicated
principal as its owner. Each owner controls a set of readers that are allowed to
read the data. By definition, an owner is implicitly contained in its reader set.
A principal is allowed to read data if and only if it is contained in the reader set
of all policies of the label attached to the data.

Example 1. The label {Bob : Lise} consists of only one policy where the owner
is Bob and the readers are Bob (the owner is always a reader) and Lise. The
label {Bob : Lise, Lars; Lise :} consists of two policies. Only Lise is allowed to
read the data. She is the only one contained in the reader set of both policies.

58

Label = {Components | ε}

Components = Component | Components; Component

Component = principal : Principals | identifier | *identifier | this

Principals = principal | Principals, principal | ε

Figure 1. Syntax of Labels in BNF.

In Example 1 labels and principals are static. The advantage of static labels
is that they can be checked at compile-time. Working only with static labels is
however sometimes too restrictive. Thus, there is a need for two new primitive
types label and principal and first-class values of these types represent labels and
principals, respectively. We will see examples of how to use these types later.

Fig. 1 shows the syntax of label expressions where ε denotes the empty word
and symbols in bold represent literals. As can be seen, a label may be empty
(meaning that the data is not confidential) or consist of different components
which we explain in turn.

A component can be a variable denoted by an identifier. Let us consider the
following Jif code:

int{Bob :} x;
int{x} y;

Here the variable x is owned by Bob. In the label for y we have variable x,
meaning that y has the same label as x—in this case {Bob:}. A component can
also be a reference to a label. Let us consider the Jif code:

label{Bob :} lb;
int{∗lb} y;

The label {∗lb} denotes the label stored in lb rather than the label of lb (which
is denoted by {lb} and would be {Bob:} here). Finally, the reserved label {this}
represents the label of an object of the class.

Principals can be arranged in hierarchies where a principal can act for another
principal (“A can act for B” means that A can do anything that B can do
assuming his power). Jif contains an actsFor clause which executes a statement
only if a certain constraint on the principal hierarchy is satisfied. There is also an
actsFor constraint on methods which guarantees that certain defined hierarchies
hold in the method body. The actsFor constraint will be contained in our profile.
For more information on principal hierarchies see [21,22].

In Sect. 4 we will need the join of two labels, which is the least restrictive
label that maintains all restrictions expressed by the two labels. Due to lack of
space we omit a formal definition here (it can be found in [23]), we just give the
following example.4

4 Intuitively, the joined label is built from the union of the owners and the intersection
of their reader sets.

59

Example 2. The join of labels {Bob : Lise} and {Bob : Lise, Lars; Lise :} from
Example 1 is {Bob : Lise; Lise :}.

2.2 Declassification

Labeling of data guarantees that information does not leak to users without
appropriate authority. Having only labels at hand is however often not suffi-
cient. Sometimes it is necessary to consciously weaken the confidentiality of
data, e.g. when an operation processes confidential data but the result should
be made less confidential to permit the caller to use it. The problem is solved by
giving authority (which consists of a list of principals) to classes and operations
using the Jif keyword where (see example in Fig. 2). An operation must not be
given more authority than its owning class5. Giving the authority (p1, . . . , pn)
to a method means that the method can act on behalf of the principals pi

(even if the caller of the method has lower authority than pi). This can be used
for the declassification of data if the owner of the data is one of the principals
p1, . . . , pn. So, any principal p1, . . . , pn is allowed to relax its own policy (e.g. add
readers) without weakening policies of other principals. E.g. the Jif statement
declassify(e,L) relabels the result of expression e with label L.

class PasswordFile {
private St r ing [] nameList ;
private St r ing { roo t : } [] passwordList ;
public boolean check (St r ing user , S t r ing password)

where author i ty (roo t){
boolean match=fa l se ;
try {

for (int i =0; i<nameList . l ength ; i ++) {
i f (nameList [i] . equa l s (user) &&

passwordList [i] . equa l s (password)) {
match=true ; break ;

}
}

} catch (Nul lPo interExcept ion e) {}
catch (IndexOutOfBoundsException e) {}

return d e c l a s s i f y (match , { user ; password }) ;
}

}

Figure 2. Jif Implementation of Class PasswordFile.

Now, we will consider an example (taken from [22]) where declassification
is needed. Fig. 2 shows a class PasswordFile having an operation check which

5 The Jif checker verifies that this property of the least privilege is obeyed.

60

takes a login name (user:String) and a password (password:String) and returns
a boolean depending on whether user and password is contained in the arrays
nameList and passwordList, respectively. On the one hand the operation should
return a boolean value (i.e. leaking the information whether the password was
correct), but on the other hand one does not want to leak the whole content
of the array passwordList. To ensure this the elements of the array are labeled
with {root:}. Certainly, one does not want to give the authority root to a normal
user. So, the return value of operation check has to be declassified not to contain
root. This means that principal root is removed from the owners of the return
value (for more information on declassification see [22]). Thus, we have permitted
to leak some information about the array passwordList. Declassification should
be used with care. E.g. the above method can in fact leak all information in
passwordList if the user is given the opportunity to call it repeatedly. We will
come back to this issue later.

3 UML Extension Mechanism

The UML is a general purpose specification language. It can be adapted to
particular domains by defining a profile. A profile is a conservative extension in
the sense that it is not allowed to modify the metamodel. The application of
a profile always results in a model that is still compliant with the metamodel.
Thus, problems concerning semantics and interchangeability between tools are
avoided.

The means for defining a profile are stereotypes, tag definitions, and con-
straints. A stereotype is used for extending metaclasses (defined in the meta-
model) or other stereotypes. Like classes, a stereotype may have properties (in
that context called tag). When a stereotype is applied to a model element, the
values of its defined tag may be referred to as tagged values.

Finally, constraints can be used to define or refine the semantics of model
elements. Constraints can be stated informally (e.g. using natural language) or
formally using an adequate language (e.g. using the Object Constraint Lan-
guage [24] which is an integral part of the UML).

4 Profile for Decentralized Label Model

In this section we define our profile which we call UMLsProfile (profile for secu-
rity in UML). Like our previous UML extension UMLS [12], it is built on the
decentralized label model. It permits confidentiality aspects to be considered in
class diagrams.

4.1 Stereotypes

The aim of our profile is to provide stereotypes for annotating classes, attributes,
operations, parameters, and return types of operations with confidentiality labels

61

and constraints. Tab. 1 shows the metaclasses that are extended (first column)
by stereotypes (second column). The tags of the stereotypes are defined in the
third column. The meaning of the stereotypes is explained in the following.

Metaclass, Stereotype Stereotypes Tags

TypedElement confidential l:label

Class authorityConstraint authority:principal[*]

Operation authorityConstraint authority:principal[*]

actsForConstraint actsFor:(principal,principal)[*]

callerConstraint caller:principal[*]

beginLabel l:label

endLabel l:label

<< send >> sendConfidential l:label

Table 1. Metaclasses extended by Stereotypes.

By using stereotype confidential, labels can be attached to instances of Typed-

Element which are attributes, formal parameters and return type of operations,
and the values of objects.

As described in Sect. 2.2 classes might be given authority to permit declas-
sification. In Tab. 1 we can see that this is achieved by extending the metaclass
Class with stereotype authorityConstraint.

In addition to authorityConstraint, the profile (and Jif) offer the callerCon-

straint and actsForConstraint which extend metaclass Operation. The callerCon-

straint allows a caller to dynamically grant authority to the invoked operation.
An operation with a callerConstraint may be called only if the caller possesses
the required static authority.

In a hierarchy of principals, some principals can act for some other princi-
pals. This can be specified using the stereotype actsForConstraint which can be
attached to operations. Then the operation can only be invoked if the specified
constraint holds at the call site.

To prevent information leaks through implicit flows, the compiler associates
a program-counter label with every statement and expression, representing the
information that might be learned by their evaluation. A beginLabel can be
specified to restrict the program-counter label at the point of invocation of a
method—preventing a method from causing side-effects that have lower security
than the value of beginLabel. Stereotype endLabel specifies what information can
be learned from the fact that the method terminates normally. We will see an
example on how to use them later.

It is also possible to give labels to individual exceptions which an operation
might throw. In UML there already exists a stereotype send which can be ap-
plied to dependencies whose source is an operation and whose target is a signal,

62

specifying that the source sends the target signal. In Tab. 1, stereotype sendCon-

fidential extends stereotype send. This permits us to attach labels to exceptions
that are potentially sent by an operation.

The whole profile UMLsProfile is depicted in Fig. 3. The figure also shows the
tags (and their types) of the stereotypes.

Figure 3. The Profile UMLsProfile.

The tags defined for the stereotypes above are of type label, principal, or are
arrays of the respective type. The syntax of values of these types is defined in
Fig. 1.

4.2 Examples and Default Values

In this section we first consider an example which involves labels and explain
which default labels apply if no label is given. Thereafter, we consider declassi-
fication and shortly discuss the profile.

Labels. Fig. 4 shows an example of UMLsProfile applied to a class Account.
In a UML diagram, the tagged values of a stereotype are denoted by UML
notes attached to the element that is adorned with the stereotype. Consider
for example attribute x annotated with stereotype confidential. A UML note is
attached to attribute x defining its label {Bob:}. Attribute y is annotated with
a label containing variable x. This means that the value of the label will be
the same as for attribute x—in this case {Bob:}. Attribute z has no label. For
attributes the default label is the empty label meaning that the attribute does
not contain confidential data.

Next, let us consider the annotation of operation parameters. The formal
parameter of operation set has the static label {Bob: Lise}. According to Jif,

63

Figure 4. Example of Applying the Profile to Attributes and Operations.

this means that the set operation can only be invoked with arguments having
this label. It would be quite tedious if one had to define a specific operation
for every static label. The solution to that problem is label polymorphism. For
example, in Fig. 4 the parameters x and y of operation add have no labels. This
means that add can be called with any labels for its arguments—x and y will
get the same labels as the arguments.

The first parameter of method compute shows how one can access the label
contained in a variable of type label. The syntax is similar to the dereference
operator * in the programming language C. Thus, the label {∗lb} denotes the
label contained in lb rather than the label of lb (which is denoted by {lb}). When
compute is invoked with the label value {Bob:} for parameter lb, parameter x

will also have the label {Bob:}. The second parameter lb of method compute is
of type label. lb is a dynamic label and it would be legal to annotate it with a
static label (e.g. {Bob : Lise}) since lb is a normal operation parameter.

Operation compare is an example for the use of a begin-label. A begin-label
attached to an operation prevents the operation to be be called from a context
with lower security. The default value for this kind of label is the program-
counter label of the caller. In the example, the begin-label is {Bob:}. It forbids
any assignment to attribute z in the body of compare since the empty label of z

has lower security then the begin-label {Bob:}.

In the operation add we have attached the label {x ; y} to the return type. It
was not necessary to explicitly state the return label in this case since the default
label of the return value is the join of the parameter labels and the end-label,
which in our case is {x ; y}.

If an operation throws an exception, by default the exception has the same
label as the end-label. However, it can also be given a different label as operation
compute shows. Here, the label {Bob:} is attached to the exception.

Declassification. In Sect. 2.2 we considered the class PasswordFile with the
operation check that takes a login name (user:String) and a password (pass-

64

word:String) and returns a boolean. We argued that the class PasswordFile and
the operation check needed the authority root to be able to declassify the boolean
return value. Fig. 5 shows the class annotated with the authority constraint.
Given this specification the code skeleton in Appendix A is generated automat-
ically, where the type Array < String, {root:} > of passwordList is translated
into an array of type String whose elements are labeled with {root:}.

Figure 5. Example for a Class containing an authorityConstraint.

4.3 Notation

In a UML model the tagged values of a stereotype are denoted by UML notes at-
tached to the element that is adorned with the stereotype. The example in Fig. 4
clearly shows that the default notation for stereotypes and tagged values clutters
up the UML model and makes it hard to read. Fortunately, UML allows a profile
to define its own notation that can be used instead of the standard notation of
the model element which the stereotype is applied to [25, Sect. 18.3.7]6.

Our notation for the extended metaclasses follows the one in UMLS [12] and
is depicted in Tab. 2. For the notation of values of labels and principals we use
the syntax defined in Fig. 1.

Fig. 6 shows the example from Fig. 4 using the new notation. The advantages
of our notation compared to the default notation are obvious.

Since we follow the UML standard, it is possible to use our profile with
any UML-compliant tool. If a tool allows for adapting the concrete syntax, it is
possible to use our more convenient notation. To guarantee interchangeability, it
is however important that the XMI representation of the diagrams is independent
of the chosen notation.

6 Note, that we follow the “UML 2.0 Final Adopted Specification” which has not been
finalized yet.

65

Metaclass Notation

TypedElement element label

Class Additional compartment for authority (see Fig. 5)

Operation visibility name begin-label (parameter-list) end-label

:return-type-expression return-label constraints

Table 2. Notation for Metaclasses.

Figure 6. Application of UMLsProfile Notation to the Example shown in Fig. 4.

Parameterized Classes. The language Jif offers parameterized classes with
respect to labels and principals. The UML 2.0 (final adopted specification) sup-
ports parameterized classes via the package Template as well. We give a lit-
tle example here since parameterized classes play an important role in making
reusable data structures with respect to labels and principals.

Figure 7. Vector parameterized on Label L.

Figure 7 shows a class Vector parameterized on a label L (in the dashed
box). This label can be used to annotate attributes and operations of the class
and makes it possible to instantiate Vector with different labels. In the example,
attribute length is annotated with the parameter label L. Attribute element is
of an array type which can have two labels: one for the array elements of type
Object (here {L}) and one for the array reference (here {Bob:}).

4.4 Discussion

The decision on what data is confidential is usually not (and should not be) a
programmer’s job. Rather the customer/domain expert has to know which data

66

is confidential. Our profile permits this decision to be moved from code to the
analysis/design level. We believe that this is crucial for building systems working
with confidential data.

In some cases declassification is needed for being able to intentionally leak
information (as the example from Fig. 2 and Fig. 5 showed). Note, that declas-
sification is extremely powerful but therefore also very dangerous. Again, the
question when to use declassification is an issue to be addressed on the analy-
sis/design level. Also giving authority to classes or methods should be used with
care. The places with authorities are spots where extra care has to be taken.

Finally, a short note on current UML tools. The idea behind producing a
profile is that it can be applied by any UML-compliant tool. However, we en-
countered that most tools are not fully UML-compliant. For example, they do
not allow to attach notes to arbitrary model elements (which is permitted ac-
cording to the UML specification).

5 Related Work

Considering security in UML is a relatively new idea. Blobel, Pharow, and Roger-
France [5] used use cases to consider security in a very informal way in a medical
setting. We find it difficult to say anything about use cases since their semantics is
not very well understood [10]. Furthermore, there has been work on developing
a framework for model-based risk assessment of security-critical system using
UML [13].

In our previous work [12] which was mainly focused on a case study we
have already considered the treatment of confidential data in UML. However,
we extended UML in a non-standard way. Furthermore, some features were left
out, for example the treatment of caller and actsFor constraints. In this paper
we give a more complete treatment of the decentralized label model in a UML-
compliant manner.

The connection between language-based security and security on the specifi-
cation level has been previously established by Mantel and Sabelfeld [20]. Their
approach is more theoretical than ours. We hope that by choosing a more prac-
tical approach we will be able to reach more designers.

Closely related to our research is Jürjens’ work on modeling confidentiality
in UML [15,14,16]. Jürjens also uses the built-in extension of UML to define a
profile called UMLsec. For checking constraints associated with the stereotypes
of his profile, Jürjens defines a precise semantics for a restricted and simplified
fragment of the UML building on a state chart semantics based on abstract state
machines [6].

This approach has some limitations. The developer has to convince himself
that the system is correct by examining the—possibly quite complex—UML
diagrams. Furthermore, it is uncertain that the code created from these diagrams
is correct. However, both problems can be eased by providing tool support.

A more serious problem are covert channels which arise from the concrete
implementation of a program. For example, control flow or information about

67

termination of a program may reveal confidential information. So, even if confi-
dentiality properties are proven on the UML level, which might be quite difficult
in itself, there might be covert channels in the code. Our approach combining
UML and Jif addresses this problem of indirect information flow [8]. The main
difference between the two approaches is that Jürjens verifies security proper-
ties on specification level while we are working on the code level using the Jif
type checker. So, both techniques should be complementary to each other. Fur-
thermore, the decentralized label model permits more fine-grained control of
confidential data than Jürjens’ approach.

There has been some work that considers role-based access control in a UML
setting [9,19]. Even though we have focused on information flow, there are some
interesting parallels to this research. UMLsProfile/Jif permits declassification of
data which can perhaps be considered as a form of access control.

6 Conclusion and Future Work

In this paper we have presented a profile UMLsProfile incorporating the decen-
tralized label model into the UML. The profile allows fine-grained control of
confidential data.

The decisions on which data must be kept confidential should be made at
an early stage. This work permits confidentiality to be considered in the design
phase of the development process. Using our profile in combination with Jif
therefore contributes to building secure software systems. Jif code skeletons can
be automatically generated from a class diagram making use of UMLsProfile.

In this paper we focused on class diagrams, probably the most important dia-
gram type with a clear semantics that allows for code generation in a straightfor-
ward way. The next step in this line of work is to extend the profile UMLsProfile
the other diagram types considered in UMLS. How Jif code can be generated
from other diagram types needs further investigation.

There is one area we have not addressed in this paper, but which is important
for our work: secure environments. Here, the deployment diagram in UML might
be very useful when specifying secure environments for Jif programs. Further-
more, it would be interesting to look at state charts as well because they can be
used to generate additional code which considers confidentiality. In particular,
Jürjens’ work [15] might be useful to take into account here.

Finally, Jif supports dynamic labels, but only in a restricted way to make
sure that static checking of confidentiality is still possible. The restriction is that
variables of type label may only be used to construct labels if they are immutable.
We believe that this restriction could be dropped if in addition to type checking
a theorem prover is used. The KeY tool [1] seems to be suited for that task for
several reasons. KeY is a tool that supports the specification and verification
of object-oriented software. It supports the specification languages UML/OCL
and the implementation language Java. Thus, KeY seems to fit very well to
UMLsProfile and Jif. Last but not least, KeY has already been successfully used
to analyze secure information flow [7].

68

Acknowledgment. We thank R. Bubel, A. Roth, A. Sabelfeld, and the anony-
mous referees for important feedback on drafts of the paper.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY Tool. Software
and System Modeling, pages 1–42, 2004. To appear.

2. D. Bell and L. LaPadula. Secure Computer Systems: Mathematical Foundations
and Model. Technical Report MTR 2547 v2, The MITRE Corporation, Nov 1973.

3. E. Bertino, S. Jajodia, and P. Samarati. Access Controls in Object-Oriented
Database Systems: Some Approaches and Issues. In N. Adam and B. Bhargava,
editors, Advanced Database Concepts and Research Issues, LNCS 759, pages 17–44.
Springer, 1993.

4. K. J. Biba. Integrity Consideration for Secure Computer System. Technical Report
ESDTR-76-372,MTR-3153, The MITRE Corporation, Bedford,MA, April 1977.

5. B. Blobel, P. Pharow, and F. Roger-France. Security Analysis and Design Based
on a General Conceptual Security Model and UML. In P. M. A. Sloot, M. Bubak,
A. G. Hoekstra, and B. Hertzberger, editors, High-Performance Computing and
Networking, 7th International Conference, HPCN Europe 1999, Amsterdam, vol-
ume 1593 of LNCS, pages 918–930. Springer, April 12-14 1999.

6. E. Börger, A. Cavarra, and E. Riccobene. Modeling the Meaning of Transitions
from and to Concurrent States in UML State Machines. In Proceedings of the 2003
ACM symposium on Applied computing, pages 1086–1091. ACM Press, 2003.

7. A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In R. Gorrieri, editor, Workshop on Issues in the Theory
of Security (WITS). IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS, 2003.

8. D. E. Denning and P. J. Denning. Certification of Programs for Secure Information
Flow. Communications of the ACM, 20(7):504–513, July 1977.

9. P. Epstein and R. Sandhu. Towards A UML Based Approach to Role Engineering.
In RBAC ’99, Proceedings of the Fourth ACM Workshop on Role-Based Access
Control, pages 135–143, October 28-29 1999.

10. G. Génova, J. Llorens, and V. O̧uintana. Digging into Use Case Relationships. In
J. Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002, volume 2460 of LNCS,
pages 115–127. Springer, September/October 2002.

11. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

12. R. Heldal and F. Hultin. UMLS Bridging Model-based and Language-based Secu-
rity. In E. Snekkenes and D. Gollmann, editors, Computer Security - ESORICS
2003, volume 2808 of LNCS, pages 235–252. Springer, 2003.

13. S. H. Houmb, F. Braber, M. S. Lund, and K. Stolen. Towards a UML Profile
for Model-Based Risk Assessment. In UML 2002 Satellite Workshop on Critical
Systems Development with UML, pages 79–91, September 2002.

14. J. Jürjens. Secure Java Development with UMLsec. In B. D. Decker, F. Piessens,
J. Smits, and E. V. Herrenweghen, editors, Advances in Network and Distributed
Systems Security, pages 107–124, Leuven, November 26-27 2001. International Fed-
eration for Information Processing (IFIP) TC-11 WG 11.4. Proceedings of the First
Annual Working Conference on Network Security (I-NetSec ’01).

69

15. J. Jürjens. Towards Development of Secure Systems using UMLsec. In H. Huß-
mann, editor, Fundamental Approaches to Software Engineering (FASE, 4th Inter-
national Conference, Part of ETAPS), volume 2029, pages 187–200, 2001.

16. J. Jürjens. UMLsec: Extending UML for Secure Systems Development. In J.-M.
Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002, volume 2460 of LNCS,
pages 412–425, Dresden, Sept. 30 – Oct. 4 2002. sv. 5th International Conference.

17. D. Kozen. Language-Based Security. In Mathematical Foundations of Computer
Science, pages 284–298, 1999.

18. B. W. Lampson. A Note on the Confinement Problem. Communications of the
ACM, 16(10):613–615, 1973.

19. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In J.-M. Jezequel, H. Hussmann, and S. Cook,
editors, The unified modeling language: model engineering, concepts, and tools; 5th
international, volume 2460, pages 426–441. Springer, 2002.

20. H. Mantel and A. Sabelfeld. A Generic Approach to the Security of Multi-Threaded
Programs. In Proceedings of the 14th IEEE Computer Security Foundations Work-
shop, pages 126–142, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Com-
puter Society Press.

21. A. Myers. Mostly-Static Decentralized Information Flow Control. Technical Report
MIT/LCS/TR-783, MIT, 1999.

22. A. C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In Sym-
posium on Principles of Programming Languages, pages 228–241, 1999.

23. A. C. Myers and B. Liskov. A Decentralized Model for Information Flow Control.
In Symposium on Operating Systems Principles, pages 129–142, 1997.

24. OMG. UML 2.0 OCL Specification. OMG Document, October 2003.
25. OMG. Unified Modeling Language: Superstructure, version 2.0, Final Adopted

Specification. OMG Document, August 2003.
26. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE

J. Selected Areas in Communications, 21(1):5–19, Jan. 2003.
27. F. B. Schneider, G. Morrisett, and R. Harper. A Language-Based Approach to

Security. In R. Wilhelm, editor, Informatics—10 Years Back, 10 Years Ahead.
Conference on the Occasion of Dagstuhl’s 10th Anniversary, volume 2000 of LNCS,
pages 86–101, Saarbrücken, Germany, August 2000. Springer.

A Jif Code Skeleton for PasswordFile

The following Jif code skeleton can be automatically generated from the UML
class diagram depicted in Fig. 5.

class PasswordFile {
private St r ing [] names ;
private St r ing { roo t : } [] passwords ;

public boolean check (St r ing user , S t r ing password) {}
}

70

Using Aspects to Manage Security Risks in
Risk-Driven Development

Siv Hilde Houmb, Geri Georg, Robert France, and Dan Matheson
Department of Computer Science

Colorado State University
Fort Collins, CO 80523, Colorado, US

sivhoumb@idi.ntnu.no, georg@CS.ColoState.EDU, france@CS.ColoState.EDU,
and dan.matheson@comcast.net

Abstract. The EU IST-project CORAS has developed an integrated
risk management and system development process for security-critical
systems based on AS/NZS 4360, RUP, and RM–ODP. The approach pre-
sented in this paper is based on the concepts of risk-driven development
and extends the CORAS framework by using aspects to specify security
risk treatment options. This enhances the evaluation of the treatment op-
tions since aspects models are decoupled from the primary model. The
result is an aspect-oriented risk-driven development approach, in which
security requirements or security risks may be identified in each phase
of the development. The treatments that addresses these requirements
or security risks are specified and implemented as aspects. Using aspects
makes it easier to develop and evaluate security treatments options and
to evolve the treatments.

Keywords:Risk-driven development (RDD), Aspect-oriented modeling
(AOM), Security risk assessment, and Trade-off analysis

1 Introduction

Developers of security-critical systems must cost-effectively identify and address
security risks throughout the development. Along with implementing functional
requirements the development of such systems involves specifying and imple-
menting security solutions or treatments that address the identified risks. The
pervasive nature of security concerns often results in treatments that are spread
across and tangled with elements in design modules. The crosscutting nature
of these security risk treatments poses a significant challenge when consider-
ing alternative treatment options or whenever one have to modify or evolve the
treatments.

Aspect-oriented modeling (AOM) techniques allow system developers to de-
scribe solutions that crosscut a design in separate design views called aspects [7].
An aspect is a pattern that characterizes a family of concern realizations and an
aspect model consist of a set of UML diagrams, both structural and behavioral,
specifying the internal structure and the behavior of the aspect. An AOM design

71

model consist of one or more aspects models and a primary model, which is spec-
ified using a set of UML diagrams. The aspect models describe solutions that
crosscut the modular structure of the primary model. Using the AOM approach,
developers of security-critical systems can separate the treatment of security
risks from the treatment of other concerns: security treatments are described by
aspects, while other design concerns are described by the primary model. This
separation eases the task of evolving the security treatments and makes it easier
to swap in and out and evaluate alternative treatment options.

This paper described an risk-driven AOM-based approach to manage security
risks called the aspect-oriented risk-driven development (AORDD) approach.
The approach is a result of integrating AOM techniques into the iterative sys-
tem development and risk management process of CORAS [1]. Security risk
assessment is performed as part of each iteration in the AORDD approach and
involves identifying potential mis-uses that pose security risks, and evaluating
the mis-uses using security risk acceptance criteria to determine which mis-uses
need to be treated. The result of a security risk assessment are aspects that
describe security risk treatments.

The reminder of this paper is structured as following. Section 2 gives a brief
overview of related work. In Section 3 we describe the AORDD approach. Section
4 outlines how the approach, and in particular the use of aspects, can be used to
support cost-benefit trade-off analysis evaluating alternative treatment options,
while Section 5 gives an small example to illustrate how to use the AORDD
approach. Section 6 concludes the paper and outlines further work.

2 Related Work

Risk-driven development combines development and risk management to effec-
tively handle security issues throughout the development. The main goal is to
cost-effectively achieve a correct level of security. There are currently few ap-
proaches targeting risk-driven development. However, there are a number of spe-
cialized risk assessment methodologies targeting the security domain. Within the
domain of health care information systems the Central Computer and Telecom-
munication Agency (CCTA) in Britain has developed CRAMM, CCTA Risk
Analysis and Management Methodology[3]. CRAMM offers a structured ap-
proach to manage computer-based systems. CRAMM is asset-driven, meaning
that the focus is on identifying the main assets connected to the system as well
as identify and assess risks to those assets.

The CORAS framework [17] is inspired by CRAMM and has adapted the
asset-driven strategy. CORAS uses UML as their modeling language in the con-
text of model-based risk assessment (MBRA). The objective of the approach is to
provide methods and tools for precise and efficient risk assessment of security-
critical systems using semi-formal models. It is a risk-driven approach where
models are used to describe the target of assessment, as a medium for commu-
nication between different groups of stakeholders involved in a risk assessment,
and to document risk assessment results and the assumptions on which these

72

results depend. CORAS also supports the evaluation of alternative treatment
options, but does not provide any guideline as such. The risk-driven approach
described in this paper makes use of aspects and the concept of aspect-oriented
modeling (AOM) to address this issue.

A growing number of researchers are developing approaches that supports
multidimensional separation of concerns throughout development. Clarke et al.
[4] describe an approach where requirements are addressed as themes before
composed to obtain a comprehensive design. Rashid et al. [21] build on this
work to produce an aspect-oriented approach to requirement analysis. Their
work supports modularization of crosscutting properties at the requirements
level to support early trade-off analysis. In the AOM approach developed by the
AOM team at Colorado State University (CSU) [7, 10, 9, 8] aspect models are
used to describe crosscutting solutions that address dependability concerns such
as security.

The work described in this paper makes use of the asset-oriented approach
of CRAMM and is based on the integrated system development and risk man-
agement process of CORAS [26]. The CORAS approach is integrated with the
AOM approach developed at CSU to provide support for specifying and imple-
menting security risk treatments as aspects and thereby support the process of
evaluating alternative treatments as input to a cost-benefit trade-off analysis.

3 Aspect-Oriented Risk-Driven Development (AORDD)

The iterative system development and risk management process developed by
CORAS [6] is structured according to the phases of the RUP (Rational Unified
Process) [25]. In each iteration, one can design, analyze, and compose a part of
the system or the system as a whole according to a particular RM-ODP (Ref-
erence Model for Open Distributed Processing) viewpoint [11]. Risk assessment
is an integrated activity of each iteration and security are thereby addressed as
early as possible.

Table 1 depicts the activities of the CORAS risk management process. Sub-
process 2 addresses the security risk identification, while sub-process 5 addresses
the allocation and evaluation of security risk treatments. Figure 1 illustrate
the relationship between the concepts involved in security risk identification,
evaluation, and treatment. This represent the security risk assessment ontology
and are used when assessing the effect of alternative treatment options.

The AORDD process extends the CORAS process by providing techniques
and notations for describing security risk treatments as aspects, and for compos-
ing the aspects with a primary design model. Modeling the security treatments
as aspects eases the task of developing and evaluating alternative treatment
options in sub-process 5, and enhance software evolution and reusability.

Figure 2 illustrates the iterative nature of the AORDD process, consisting of
a requirement phase, a design phase, implementation phase, deployment phase,
and a maintenance phase. Development spirals through requirements to mainte-
nance, and in each phase development activities are structured into iterations.

73

Sub-process 1: Identify Context

– Activity 1.1: Identify areas of relevance
– Activity 1.2: Identify and value assets
– Activity 1.3: Identify policies and eval-

uation criteria
– Activity 1.4: Approval

Sub-process 2: Identify Risks

– Activity 2.1: Identify threats to assets
– Activity 2.2: Identify vulnerabilities of

assets
– Activity 2.3: Document unwanted inci-

dents

Sub-process 3: Analyze Risks

– Activity 3.1: Consequence evaluation
– Activity 3.2: Frequency evaluation

Sub-process 4: Risk Evaluation

– Activity 4.1: Determine level of risk
– Activity 4.2: Prioritize risks
– Activity 4.3: Categorize risks
– Activity 4.4: Determine interrelation-

ships among risk themes
– Activity 4.5: Prioritize the resulting

risk themes and risks

Sub-process 5: Risk Treatment

– Activity 5.1: Identify treatment options
– Activity 5.2: Assess alternative treat-

ment approaches

Table 1. Sub-processes and activities of the CORAS risk management process [23]

Work moves from one phase to the next after first iterating through various sub-
phases that end with acceptable analysis results. In the following we will only
focus on the requirement and design phase of the AORDD process. Details on
the main steps in these two phases is provided in Figure 3. The activities of the
security risk management step of each phase is as follows.

– Sub-process 1: Context identification
• Activity 1.1: Identify purpose, scope, the target of assessment, business

perspectives, and the system environment
• Activity 1.2: Identify and value assets, identify stakeholders, and create

the asset-stakeholder graph
• Activity 1.3: Identify policies and security risk acceptance criteria

– Sub-process 2: Risk identification
• Activity 2.1: Identify security threats to assets
• Activity 2.2: Identify vulnerabilities in ToA, business processes, and the

system environment
• Activity 2.3: Document mis-use scenarios

– Sub-process 3: Risk analysis
• Activity 3.1: Impact estimation
• Activity 3.2: Frequency estimation

– Sub-process 4: Risk evaluation
• Activity 4.1: Determine level of risk
• Activity 4.2: Categorize risk in risk themes
• Activity 4.3: Determine interrelationships among risk themes

74

Security Threat

Vulnerability AssetValue

Stakeholder

Frequency Loss

Target of Assessment

Security Policy

Impact

Security Risk Treatment

Misuse

Security Risk Acceptance Criteria Risk Level

Security Requirement

1..*
reduces

leads to

1..*

gives

1 leads to

1..*

1..*

1..*

exploits

affects

1

1

1..*

1..*

affects

1

11..*

relates to

1

1

1

1

1

1

1

11

relates to

1

reduces 1..*

has

1

1..* Protects

1owns

1

1..*

1

has

1..*

1

1

reduces

1

1..*

1

Security Threat

Vulnerability AssetValue

Stakeholder

Frequency Loss

Target of Assessment

Security Policy

Impact

Security Risk Treatment

Misuse

Security Risk Acceptance Criteria Risk Level

Security Requirement

1..*
reduces

leads to

1..*

gives

1 leads to

1..*

1..*

1..*

exploits

affects

1

1

1..*

1..*

affects

1

11..*

relates to

1

1

1

1

1

1

1

11

relates to

1

reduces 1..*

has

1

1..* Protects

1owns

1

1..*

1

has

1..*

1

1

reduces

1

1..*

1

Fig. 1. Concepts and their relationship in security risk assessment

• Activity 4.4: Identify conflicts
• Activity 4.5: Prioritize risk themes and risks
• Activity 4.6: Solve conflicts

– Sub-process 5: Risk treatment
• Activity 5.1: Identify risk treatment option
• Activity 5.2: Identify effect and cost of treatment options
• Activity 5.3: Create aspect models for each treatment option
• Activity 5.4: Assess alternative treatment options using the aspect mod-

els as input to the cost-benefit trade-off analysis

The main difference from the activities of the CORAS risk management pro-
cess is the refinement of the activities in sub-process 1; the context description,
the use of the concept mis-use rather than unwanted incident, and the activities
of sub-process 5; risk treatment, where we use aspects and cost-benefit trade-off
analysis. Each iteration in a phase starts with specifying the system according
to a RM-ODP viewpoint at different levels of abstraction. The process moves to
security risk assessment as soon as sufficient amount of information of the system
is gathered (depending on the phase, viewpoint, and the level of abstraction).

75

In security risk assessment one perform two types of security risk identifica-
tion; vulnerability and security threat identification (for more information see
AS/NZS 4360 [2] and the Common Criteria [5]). A mis-use scenario is defined
as the composition of a vulnerability and a security threat, meaning that we
have a mis-use if there exist a vulnerability and a security threat such that the
security threat might exploit the vulnerability as illustrated in Figure 4. The
result from a security risk assessment are a set of security treatment aspects.
Security risk treatment aspects are solutions to the mis-use scenarios. As part
of the security risk assessment we perform a cost-benefit analysis (sub process
5; risk treatment) where we evaluate alternative treatment options. This is done
by assessing the effect and cost of each treatment option. The use of aspects
in the trade-off analysis makes it easy to swap in and out treatment options to
evaluate their effect. More information on the trade-off analysis is given in the
next section.

In order to identify design stress points and design flaws we need to compose
the aspect and primary models. A design flaw is undesirable emergent behavior
arising as a result of integrating aspects with primary model, while a design
stress point is a non-robust part of a design that can be exploited to produce
unauthorized behavior (which gives input to the vulnerability identification in
security risk assessment). The main difference between the analyze and security
risk assessment activity is that in risk assessment one looks at how the system
environment may influence the system, while the analyze activity looks at the
system and flaws within the system. Composed aspect and primary models are
analyzed to determine their validity. The methods used in the analyze activity
depends on the size and the criticality of the system and might involve model
checking, different types of testing, etc. utilizing formally defined operational
semantics for UML models that supports rigorous static and dynamic analysis.
The main purpose of the analyze activity is to ensure that the security risk
treatments are consistent with the system quality objectives.

In the requirements specification phase, security risk assessment is done using
the functional and security requirements as the target of assessment. The result
of security risk assessment is a set of unresolved security issues. These issues
are either treated in sub-process 5, or transformed into security requirements for
the next iteration. In the design phase the security risk assessment is done using
the available design specification as the target of assessment. The result is either
treated in sub-process 5 of the assessment by a design decision, or transformed
into security requirements. This means that whenever new security requirements
are introduced, the relevant parts of the system go through a new requirement
security risk assessment and analysis (refers to the analyze activity in Figure 2)
before proceeding.

Security risk assessment in all phases is done by identifying critical assets
and assigning asset values before doing a security risk identification (sub-process
2). In security risk identification threats, vulnerabilities, and mis-use scenarios
are identified as described earlier. The result from the risk identification is then
evaluated in the risk analysis sub-process, where impact and frequency values are

76

assess
risks

specify
requirements

analyze

specify
design

analyze

assess
risks

implement

assess
risks

analyze

deploy

assess
risks

analyze

specify
changes

assess
risks

analyze

Requirements Phase

Design Phase

Implementation PhaseDeployment Phase

Maintenance Phase

iterative
development

Fig. 2. Outline of the aspect-oriented risk-driven development process

estimated. In sub-process 4; risk estimation, the security risk level is evaluated
against a set of security risk acceptance criteria. Describing the security risk
acceptance criteria is part of activity 1.3, but are often also provided at later
stages in the assessment. The security risk level is evaluated against these criteria,
where security risk level is composed by one mis-use, one frequency, and one
impact. An impact describes loss or gain (opportunities) of value for one or
more assets. A security risk treatment addresses the security risk level and can
either reduce frequency, impact or both, or transfer the impact to a third party.

4 Trade-off analysis

Security risk treatment is a trade-off between minimizing risk and optimizing
benefit [20]. This is supported through the cost-benefit trade-off analysis in ac-
tivity 5.4; assess alternative treatment options using the aspect models as input
to the cost-benefit trade-off analysis. Figure 5 illustrate the relationship between
impact loss and impact gain. The up-arrows represent opportunities and down-
arrows represent security risks. The main idea is to balance the security risks

77

In
ce

pt
io

n

Choose a part

Specify funtional req

Req. risk assessment

Trade-off decision

iterate

In
ce

pt
io

n
In

ce
pt

io
n

iterate

R
eq

ui
re

m
en

t

Im
pl

em
en

ta
ti

on

Treatment as req.

Specify sec. req

Choose a part

Specify design

Design risk assessment

Trade-off decision

Treatment as design

In
ce

pt
io

n

Choose a part

Specify funtional req.

Req. risk assessment

Trade-off decision

iterate

In
ce

pt
io

n

E
la

bo
ra

ti
on

iterate

In
ce

pt
io

n

E
la

bo
ra

ti
on

iterateiterate

R
eq

ui
re

m
en

t

D
es

ig
n

iterate

Im
pl

em
en

ta
ti

on

Aspect

Refine and update Refine and update

In
ce

pt
io

n

Choose a part

Specify funtional req

Req. risk assessment

Trade-off decision

iterate

In
ce

pt
io

n
In

ce
pt

io
n

iterate

R
eq

ui
re

m
en

t

Im
pl

em
en

ta
ti

on

Treatment as req.

Specify sec. req

Choose a part

Specify design

Design risk assessment

Trade-off decision

Treatment as design

In
ce

pt
io

n

Choose a part

Specify funtional req.

Req. risk assessment

Trade-off decision

iterate

In
ce

pt
io

n

E
la

bo
ra

ti
on

iterate

In
ce

pt
io

n

E
la

bo
ra

ti
on

iterateiterate

R
eq

ui
re

m
en

t

D
es

ig
n

iterate

Im
pl

em
en

ta
ti

on

Aspect

Refine and update Refine and update

Fig. 3. Details for the requirement specification and design phase of the aspect-oriented
risk-driven development process

Security vulnerabilitiesSecurity threats

Mis-use

Fig. 4. Relation between threat, vulnerability, and mis-use

and the opportunities. The trade-off analysis consist of two main phases; (1)
evaluate security risks, and (2) trade-off according to prioritizes. The security
acceptance criteria must be evaluated prior to the trade-off analysis, since the
security acceptance criteria has the highest priority and must be meet. The re-
sult from step 1 is a list of security risks in need of treatment. The prioritizing of
these security risks is done during the security risk assessment and is also used
as input to the evaluate security risk step.

Loss of asset value is the main measure used in security risk assessment. How-
ever, when one assesses the trade-off between different properties of a system it
is also necessary to look into potential gains. When evaluating which risks to
treat and which security treatments to implement, one needs to assess the se-
curity risks against the prioritizing algorithm before doing the trade-off analysis

78

and looking into maximizing the effect of the resources spent. In addition to
making sure that the security risk acceptance criteria is meet, one also need to
consider relevant and mandatory standards, policies, and laws before performing
economic maximization. We will not describe or illustrate the trade-off analysis
in this paper, but rather focus on giving a small example applying the AORDD
approach.

Likelihood

Im
pa

ct
L

os
s

Im
pa

ct
G

ai
n

In
cr

ed
ib

le

R
em

ot
e

O
cc

as
io

na
l

Pr
ob

ab
le

Fr
eq

ue
nt

Catastrophic Loss

Critical Loss

Marginal Loss

Negligible Loss

Considerable Gain

Major Gain

Marginal Gain

Negligible Gain

Likelihood

Im
pa

ct
L

os
s

Im
pa

ct
G

ai
n

In
cr

ed
ib

le

Im
pr

ob
ab

le

R
em

ot
e

Pr
ob

ab
le

Fr
eq

ue
nt

Catastrophic Loss

Critical Loss

Marginal Loss

Negligible Loss

Considerable Gain

Major Gain

Marginal Gain

Negligible Gain

Likelihood

Im
pa

ct
L

os
s

Im
pa

ct
G

ai
n

In
cr

ed
ib

le

R
em

ot
e

O
cc

as
io

na
l

Pr
ob

ab
le

Fr
eq

ue
nt

Catastrophic Loss

Critical Loss

Marginal Loss

Negligible Loss

Considerable Gain

Major Gain

Marginal Gain

Negligible Gain

Likelihood

Im
pa

ct
L

os
s

Im
pa

ct
G

ai
n

In
cr

ed
ib

le

Im
pr

ob
ab

le

R
em

ot
e

Pr
ob

ab
le

Fr
eq

ue
nt

Catastrophic Loss

Critical Loss

Marginal Loss

Negligible Loss

Considerable Gain

Major Gain

Marginal Gain

Negligible Gain

Fig. 5. The relationship between frequency and impact loss and impact gain

5 Developing e-Commerce system using AORDD

An aspect-oriented design model consists of a set of aspects and a primary model.
An aspect model describes how a single objective is addressed in a design, and the
primary model addresses core functional concerns. The aspects and the primary
model are composed before security risk assessment and analysis is performed,
as well as before implementation or code generation. In the following we give a
small example illustrating the use of aspects to specify security risk treatments
in the AORDD approach.

Consider an e-commerce system for online purchase of travel tickets running
over the Internet with a front-end web server and a back-end database server
located on the LAN (local area network) inside the Internet router. The router

79

Security risk acceptance criteria-

Conflict
solving

policies
laws and regulation
mis-use
frequency

priorities
frequency

impacts

Trade-off
according to
priorities

Security risks -

Evaluate
security risks

List of risks in need of treatment

priorities
frequency

impacts

Trade-off
according to
priorities

treatment options

Maximized use of resources

Security risk acceptance criteria-

Conflict
solving

policies
laws and regulation
mis-use
frequency

priorities
frequency

impacts

Trade-off
according to
priorities

Security risks -

Evaluate
security risks

List of risks in need of treatment

priorities
frequency

impacts

Trade-off
according to
priorities

treatment options

Maximized use of resources

Fig. 6. Overview of the trade-off procedure

is configured to accept all incoming and outgoing requests. Figure 7 provide an
overview of the network.

Database

Web Server

Router

Internet

Fig. 7. Overview of the network

The system is defined as the software running the e-Commerce system as
well as the network the e-Commerce application is running on, meaning the
LAN including the router. The system environment is The Internet. The system
currently has no security mechanism implemented and there is no enforcement
of security policies, laws, and regulations. The focus of the example is on the se-
curity risk assessment part of the AORDD approach, and how treatment options
can be represented as aspects.

80

In the first iteration of the development process we specify the functional re-
quirements and perform the requirement security risk assessment based on these
requirements (sub-process 1). In this example we consider the functional require-
ment ”Consumers pays for services online” [18]. This clearly represent a problem
since the communication is not encrypted or in any other way secured. The se-
curity risk identification and analysis (sub-process 2 and 3) is performed using
appropriate security risk analysis methods. In this example we used security-
HazOp [27], where one does security risk identification using the negation of the
security attributes combined with traditional HazOp guidewords such as to late,
never, altered, to early etc. [19].

The result from the requirement security risk assessment gives statement re-
garding potential treatment solutions. These solutions is evaluated in sub-process
5 using the cost-benefit trade-off analysis. Security risks identified are evaluated
against the security risk acceptance criteria. Security risks are measured in terms
of security risk levels, which is a combination of the impact and the frequency
value. In this context the security risk acceptance criteria is defined such that
all security risks with risk level equal to or higher than ”High” must be treated
(scale Low, Medium, High, and Extreme [19]). Table 2 gives an overview of the
main result of the assessment.

Threat Risk Level Security risk treatment

Payment information is dis-
closed to unauthorized party

High Encrypt link (using VPN is suf-
ficient) OR Encrypt data (en-
crypted data sent on unsecure
channel) OR use TSL

Payment is prohibited by unau-
thorized party (DOS or similar)

High Use time outs and session ID

Table 2. Main result of the security risk assessment

The treatment option suggested for the two security risks in need of treatment
is encryption (see Table 2). Encryption is crosscutting and may be used in various
modules in a system. Another important issue with encryption is to be able to
easily change the encryption algorithm. In AORDD treatment options is modeled
as aspects in order to swamp treatment solutions in and out during trade-off
analysis and whenever the treatment solutions evolve or need to be replaced.

Results from security risk assessment in one iteration of the development is
either treated in that iteration or transferred into security requirements in the
subsequent iteration. To specify security requirements one may use UMLsec [16],
[15], the UML extension for secure systems development. For further explana-
tion on how to use UMLsec in a risk-driven development context the reader is
referred to [24]. Figure 8 gives one example of security risk treatment solution
using a UML behavioral diagram. The diagram shows encryption of payment
information using a simple secrete key encryption protocol. In this example we

81

only focus on the behavioral aspects. A complete aspect design covers all de-
sign views and consist of a set of structural and behavioral diagrams. The set
of structural and behavioral diagrams is then weaved with the primary model
before coding.

– Security requirement: Ensure confidentiality of payment information.
– Specified using UMLsec: To ensure confidentiality we use the UMLsec stereo-

type secrecy for the all payment information.

Payment <<data security>>
{secrete={K

SP-1
, K

j
, K

C-1
, s}}

Client: Front-end server:

init(N
i
, K

C
, Sign

KC-1
(C::K

C
))

resp({Sign
KFES-1

(K
j
::N')}K', Sign

KC-1
(S::K

SP
))

xchd({s}k)

xchd({s}k)

Encryptk(M1)

M1 := payment information

N’ := args,1,1
K’ := args,1,2

K - secret key of C and FES

Fig. 8. Security risk treatment aspects for encryption of payment information

6 Conclusion and Further Work

In this paper we have presented an AORDD approach based on the CORAS
framework for risk assessment of security critical systems and AOM. Aspects are
used to describe security risk treatments, while core functionality is described
in the primary model. The process handles security issues in all phases of the
development. Security is addressed using security risk assessment and static and
dynamic system analysis. Security risks identified in one phase is treated in that
iteration and analyzed in the following iteration. Before system analysis, aspects,
and the primary model is composed and the analysis is done on the composed
model. This makes sure that consistency of the system is maintained and that
the system fulfills its requirements, both functional and security requirements,
as well as reveal potential stress points and errors throughout the development.

By treating security risk treatment as aspects one gain a great degree of
reusability and a low degree of coupling. This opens for the ability to assess

82

different security treatment options. A aspect-oriented design does also enhance
the ability to do cost-benefit trade-off analysis as part of the security risk as-
sessment. The goal of the trade-off analysis is to minimize the resource spent on
managing security risks or at least to make effective use of the resources spent.

The current version of the AORDD approach is preliminary and we are cur-
rently working on extending and refining all phases of the approach. Further
work includes extending and refining the trade-off approach to handle both fault
tolerance and security issues. We will also extend the risk assessment phase in the
AORDD approach to include assessment of fault tolerance. An important issue
to consider in this work is to look into standards targeting these two attributes
and incorporate guidelines and recommendation from domain specific standards.
Relevant standards targeting security is IEC13355 [14], ISO17799 [13], and Com-
mon Criteria [5]. Important standards targeting fault tolerance is IEC61508 [12],
DO-178B [22], MoD 00-56 [19], and similar safety relevant standards.

References

1. CORAS (2000-2003). A platform for risk analysis of security critical systems.
IST-2000-25031, http://www.nr.no/coras/, 9. March 2003.

2. AS/NZS. AS/NZS 4360:1999, Risk Management. Standards Australia, Strathfield,
1999.

3. B. Barber and J. Davey. The use of the ccta risk analysis and management
methodology cramm in health information systems. In K.C. Lun, P. Degoulet,
T.E. Piemme, and O. Rienhoff, editors, MEDINFO 92, pages 1589–1593, Amster-
dam, 1992. North Holland Publishing Co.

4. S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Separating concerns throughout
the development lifecycle. In C. Lopes, L. Bergmans, A. Black, and L. Kendall, ed-
itors, Proceedings Of The Aspect-Oriented Programming Workshop at ECOOP’99.
Lisbon, Portugal, June 1999.

5. Common Criteria for Information Technology Security Evaluation, Version 2.1,
CCIMB–99–031 edition, August 1999. Part 1: Introduction and general model.

6. CORAS, The CORAS Intregrated Platform. Poster at the CORAS public work-
shop during ICT-2002, 2002.

7. R. B. France, I. Ray, G. Georg, and S. Ghosh. An aspect-oriented approach to
design modeling. To be published in IEE Proceedings - Software, Special Issue on
Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design,
to appear, 2004.

8. G. Georg, R. France, and I. Ray. An aspect-based approach to modeling security
concerns. In Workshop on Critical Systems Development with UML (CSDUML’02).
Dresden, Germany, October 2002.

9. G. Georg, R. France, and I. Ray. Designing high integrity systems using aspects.
In The Fifth IFIP TC-11 WG 11.5 Working Conference on Integrity and Internal
Control in Information Systems (IICIS 2002). Bonn, Germany, November 2002.

10. R. Georg, G.and France. Uml aspect specification using role models. In Advances
in Object-Oriented Information Systems: OOIS2002, September 2002.

11. ISO/IEC. ISO/IEC 10746: Reference Model for Open Distributed Processing,
1995.

83

12. ISO/IEC. ISO/IEC 61508 Functional safety of electical/electronic/progammable
electronic safety–related systems, 1998.

13. ISO/IEC. ISO/IEC 17799:Information technology – Code of Practice for informa-
tion security management, 2000.

14. ISO/IEC. ISO/IEC 13335: Information technology – Guidelines for management
of IT Security, 2001.

15. J. Jürjens. Principles for Secure Systems Design. PhD thesis, Wolfson College,
2002.

16. J. Jürjens. UMLsec: Extending UML for Secure Systems Development. In UML
2002 – The Unified Modeling Language, 2002.

17. K. Stølen, F. den Braber, R. Fredriksen, B. A. Gran, S. H. Houmb, Y. C. Stama-
tiou, J. Ø. Aagedal. Model-based risk assessment in a component-based software
engineering process - using the CORAS approach to identify security risks, chapter
Chapter 11 in Business Component-based Software Engineering. Kluwer Academic
Publishers, 2002.

18. Ø. M. Lillevik. An model-based approach to handling risk in security criti-
cal systems. Master’s thesis, Norwegian University of Science and Technology,
http://www.stud.ntnu.no/ lillevik/CORAS/masterthesis.pdf, 2002.

19. Ministry of Defence. Defence Standard 00–56 issue 2: Safety Management Require-
ments for Defence Systems, 1996.

20. S. Northcutt. Network Intrusion Detection – An Analyst‘s Handbook. New Riders,
1999.

21. A. Rashid, P. Sawyer, A. Moreira, and J. Araujo. Early aspects: A model for
aspect-oriented requirements engineering. In IEEE Joint International Conference
on Requirements Engineering, pages 199–202. Essen, Germany, IEEE Computer
Society Press, September 2002.

22. RTCA. DO-178B: Software Considerations in Airborne Systems and Equipment
Certification, 1985.

23. S. H. Houmb, F. den Braber, M. Soldal Lund, K. Stølen. Towards a UML profile
for Model–Based Risk Assessment. In UML’2002, Satellite Workshop on Critical
Systems Development with UML, 2002.

24. S. H. Houmb, J. Jürjens. Developing Secure Networked Web–Based Systems Us-
ing Model–based Risk Assessment and UMLsec. In Proceedings of Asia-Pacific
Software Engineering Conference, pages 488–498. IEEE Computer Society, 2003.

25. R. Software. The rational unified process, 1998.
26. K. Stølen, F. den Braber, T. Dimitrakos, R. Fredriksen, B.A. Gran, S.H. Houmb,

Y.C. Stamatiou, and J.Ø. Aagedal. Model-based risk assessment in a component-
based software engineering process: The CORAS approach to identify security
risks. In Franck Barbier, editor, Business Component-Based Software Engineering,
pages 189–207. Kluwer, 2002. ISBN: 1-4020-7207-4.

27. R. Winther, O. Johnsen, and B. A. Gran. Security Assessments of Safety Critical
Systems Using HAZOPs. In Computer Safety, Reliability and Security, 20th In-
ternational Conference, SAFECOMP 2001, Budapest, Hungary, September 26-28,
2001, Proceedings, volume 2187 of Lecture Notes in Computer Science. Springer,
2001.

84

UML 2.0 Interactions: Semantics and Refinement

Maŕıa Victoria Cengarle1 and Alexander Knapp2

1 Technische Universität München
cengarle@in.tum.de

2 Ludwig-Maximilians-Universiẗat München
knapp@pst.ifi.lmu.de

Abstract. The UML 2.0 integrates a dialect of High-Level Message Sequence
Charts (HMSCs) for interaction modelling. The most noteworthy addition of
UML 2.0 interactions to HMSCs is the introduction of negated specifications
which can be used to rule out behaviour from implementations. A trace-based
semantics for UML 2.0 interactions is proposed which captures both the standard
composition operators for UML 2.0 interactions from HMSCs, and the propri-
etary negation and assertion operators. The semantics lays the ground for dis-
cussing several alternatives for treating negation in interactions. In particular, the
semantics decides whether a trace is positive or negative for a given interaction;
all other traces are deemed to be inconclusive. Based on these verdicts, notions
of implementation and refinement for interactions are defined.

1 Introduction

UML interactions describe possible message exchanges between system instances. In
UML 2.0, a dialect of High-Level Messages Sequence Charts (HMSC [4]) replaced the
quite inexpressive notion of UML 1.x interactions [5]. Besides integrating the standard
HMSC primitives like sequential, parallel, and iterative composition of interactions,
UML 2.0 provides means to specify negative behaviour, i.e., behaviour forbidden in
system implementations. The ensuing increase in expressiveness makes UML 2.0 an ac-
ceptable choice for modelling safety-critical systems. However, in order to put UML 2.0
interactions on an equal footing with HMSCs or Live Sequence Charts (LSC [2]), a for-
mal understanding of the semantics of its interaction language is indispensable. More-
over, the notion of implementation and refinement, based on the formal semantics, form
a necessary prerequisite for using UML 2.0 interactions as a formal design language.

In fact, the UML 2.0 specification document [6] is rather vague on the innovative
features of the interaction language, like negation. The semantics of what may be called
the positive fragment of UML 2.0 interactions, i.e., the language part that does not con-
tain negation, can be equipped straightforwardly with a formal semantics following the
specification [9]. Not surprisingly, however, different interpretations of negative inter-
actions have been proposed in the literature. According to the specification, a UML 2.0
interaction describes valid (or positive) and invalid (or negative) traces of event occur-
rences where invalid traces are induced by using the unary interaction operatorsneg(−)
andassert(−). The set of positive and negative traces defined by an interaction need
not cover all possible interactions, so the remaining traces may be called inconclusive

85

for the interaction. Sẗorrle [8] discusses several alternatives for the negated interaction
neg(S) ranging from “not the [valid] traces ofS” over “anything but the [valid] traces of
S” to exchanging the valid and the invalid traces ofS; he finally adopts the last view in
order ensure that double negation is the identity. Each of these interpretations shows a
drawback: In general, the first and the last approach assign no positive traces toneg(S)
and thus the combination of negation with non-negated interaction fragments leads to
an empty set of positive traces. The second approach discards the possibility of incon-
clusive traces. In contrast, Haugen and Stølen [3] interpret the valid traces ofneg(S) as
consisting just of the empty trace; a formal definition of valid and invalid traces of an
interaction, however, is not given.

We propose a trace-based, formal semantics for UML 2.0 interactions including
part of the positive fragment but concentrating on the language constructs for specify-
ing negative traces. For the definition of the semantics we employ Pratt’s framework
of partially ordered multisets or pomsets [7] for modelling concurrency. On the one
hand, this framework simplifies the definition of the various composition operators for
interactions; on the other hand, traces are subsumed by linear pomsets. The semantics
decides if a trace is positive or if it is negative for an interaction. We only briefly sum-
marise the semantics of the positive interaction fragment which coincides with Störrle’s
interpretation [9]. For negated interactions, we build on Haugen and Stølen’s view [3]
and define the negative traces of combined interaction fragments. We detail the con-
sequences of this approach and contrast it with Störrle’s interpretations. Moreover, we
provide means for reducing the semantics to only calculating the positive traces of an
interaction, albeit at the expense of a classical not-operator. The semantics is put to use
by introducing a notion of an implementation of an interaction as a process that shows
a least one positive trace of the interaction and no negative trace. In particular, our in-
teraction semantics implies that a trace may be simultaneously positive and negative for
the same interaction. We discern between such overspecified interactions and interac-
tions that are contradictory in the sense that they do not admit an implementation. Based
on interaction implementations, we introduce a model-theoretic notion of refinement of
interactions.

The remainder of this paper is structured as follows: In Sect. 2 we briefly recall the
notion of pomsets and traces. The fragment of the interaction language of UML 2.0
considered here is introduced in Sect. 3, together with its abstract syntax. In Sect. 4
the language of interactions is equipped with a trace-based formal semantics, which in-
cludes both valid and invalid traces. In Sect. 5 the reduction of the semantics of negation
to the semantics of valid traces is studied. The semantics is used in Sect. 6 to define the
concepts of implementation and refinement of interactions. In Sect. 7 we analyse impli-
cations of the introduced notions with respect to related work. We conclude in Sect. 8
with an outlook to future research.

2 Preliminaries

We briefly review the basic definitions on partially ordered, labelled multisets as intro-
duced by Pratt [7] for modelling concurrency. In particular, we define sequential and
parallel composition operators and the notion of traces and processes.

86

A partially ordered, labelled multiset, orpomset, is the isomorphism class[(X,≤X ,
λX)] of a labelled partial order(X,≤X , λX) w.r.t. monotone, label-preserving maps.
A trace is a pomset whose ordering is total. We writelin(p) for all possible linearisa-
tions of a pomsetp, i.e., all traces that extend the ordering ofp: [(X ′,≤X′ , λX′)] ∈
lin([(X,≤X , λX)]) if, and only if X ′ = X, λX′ = λX , and≤X ⊆ ≤X′ where
x1 ≤X′ x2 or x2 ≤X′ x1 for all x1, x2 ∈ X ′.

Theemptypomset, represented by(∅, ∅, ∅), is denoted byε. Letp = [(X,≤X , λX)]
andq = [(Y,≤Y , λY)] be pomsets such thatX ∩ Y = ∅. Theconcurrenceof p andq,
written asp‖q, is given by[(X∪Y,≤X∪≤Y , λX∪λY)]. Theconcatenationof p andq,
written asp ;q, is given by[(X∪Y, (≤X ∪≤Y ∪(X×Y))∗, λX ∪λY)]. Given a binary,
symmetric relation<> on labels, the<>-concatenationof p andq, written asp ;<> q, is
given by[(X∪Y, (≤X∪≤Y ∪{(x, y) ∈ X×Y | λX(x) <> λY (y)})∗, λX∪λY)]. Note
that concatenation and<>-concatenation are associative, and concurrence is associative
and commutative.

A processis a set of pomsets. Ann-ary functionf on pomsets is lifted to processes
P1, . . . , Pn by definingf(P1, . . . , Pn) = {f(p1, . . . , pn) | p1 ∈ P1, . . . , pn ∈ Pn}.

3 UML 2.0 Interactions

UML 2.0 interactions describe message exchanges between instances. Consider the
sample basic interaction in Fig. 1(a) which specifies two instancesx andy which ex-
change the messagesa andb. The dispatch of a message (depicted by the arrow tail)
and the arrival of a message (arrow head) on the lifeline of an instance (dashed line)
are called event occurrences. The pictorial representation of a basic interaction carries
the intuitive meaning of a partial order of event occurrences: The dispatch of a message
occurs before the arrival of the same message; and the event occurrences on the lifeline
of an instance are ordered from top to bottom. Thus, the interaction in Fig. 1(a) defines
a single valid trace in which the following event occurrences appear in this order:a is
sent fromx to y; a is received byy from x; b is sent fromy to x; b is received byx
from y. In particular, all other traces are inconclusive for this interaction. On the other
hand, the interaction in Fig. 1(b) defines both negative and positive traces. The trace of
first sending and receivinga and then sending and receivingb is negative, whereas the
trace just consisting of sending and receivinga is positive. Again, all other traces are
inconclusive, as the interaction provides no verdicts on these traces.

y : Y
sd

x : X

a

b

(a) Basic interaction diagram

y : Y
sd

x : X

neg

a

b

(b) Interaction diagram with negation

Fig. 1.Sample interactions

87

More generally, a UML 2.0 basic interaction consists of event occurrences and a
general ordering relation which induces an arbitrary partial order on the set of event oc-
currences, subject to the following constraints: The dispatch of a message occurs before
the arrival of the message; and all event occurrences for the same lifeline are totally or-
dered. Moreover, UML 2.0 puts a number of interaction-building operators at disposal.
In sequential composition, the behaviour of the resulting interaction is the behaviour
of the first given interaction followed by the behaviour of the second given interaction.
There are two kinds of sequential composition which differ in the meaning of the word
“followed”. Strict composition requires the behaviour of the first interaction to be com-
pletely performed before starting with the behaviour of the second interaction. Weak
composition only requires the behaviour specified for an instance in the first interaction
to be completely performed before starting with the behaviour for that instance in the
second interaction. Other operators are parallel composition, disjunction, loop, ignore,
assert, and negation. Two parallel interactions are to be executed simultaneously. Dis-
junction means to execute any one of two given interactions. Loop repeatedly executes
its interaction argument, as long as given by two additional natural numbersm andn
passed as parameter: at leastm and at mostn times, wheren can also be∞meaning an
arbitrary number of times. Ignore allows additional messages to occur besides the ones
specified in its interaction argument. Finally, assertion discards inconclusive traces, and
negation prohibits the behaviour specified by its argument.

We define the abstract syntax of the fragment of the language of UML 2.0 inter-
actions introduced above, by first characterising basic interactions as pomsets and then
capturing the interaction operators by a context-free grammar. We assume two primitive
domains forinstancesI andmessagesM. An evente is either of the formsnd(s, r,m)
or of the formrcv(s, r,m), representing the dispatch and the arrival of messagem from
senderinstances to receiverinstancer, respectively. The set of events is denoted byE.
We say that the instances is activefor snd(s, r,m) and, similarly, that the instancer is
active for rcv(s, r, m). We define a binary, symmetricconflict relation<> on events: If
an instance is active for both eventse ande′ thene <> e′.

A basic interaction is given by an event-labelled pomset[(E,≤E , λE)] such that
conflicting events do not occur concurrently, i.e., ife1, e2 ∈ E with λE(e1) <> λE(e2),
thene1 ≤E e2 or e2 ≤E e1.

Interaction ::= Basic
| CombinedFragment

CombinedFragment::= strict(Interaction, Interaction)
| seq(Interaction, Interaction)
| par(Interaction, Interaction)
| loop(Nat, (Nat | ∞), Interaction)
| ignore(Messages, Interaction)
| alt(Interaction, Interaction)
| neg(Interaction)
| assert(Interaction)

Table 1.Abstract syntax of interactions (fragment)

88

The abstract syntax of interactions is given by the grammar in Tab. 1. Therein,Basic
ranges over the basic interactions,Nat ranges over the natural numbers, andMessages
over the subsets ofM.

From the notion of basic interactions and the interaction operators in Tab. 1 a num-
ber of auxiliary interaction operators can be derived. We use the nameskip for the
empty (basic) interaction, which is given by the pomset[(∅, ∅, ∅)]. The operatoropt(−)
is defined byopt(S) = alt(skip, S), the operatorconsider(−,−) by consider(M , S) =
ignore(M \M , S). In fact, the UML 2.0 specification defines several other interaction
operators, in particularbreak andcritical; these operators, as well as message parameters
and conditions, are not considered in this work.

4 Semantics

We define a classical satisfaction relation between traces and interactions that do not
contain occurrences of the operator for negation. We afterwards extend this definition
for negation, and complement it with a negative satisfaction relation. After presenting
some notorious examples, we show some properties of the notions introduced so far.

4.1 Semantic Domains

The domainP comprises all pomsets[(E,≤E , λE)] labelled with events fromE
such that ife1, e2 ∈ E with λE(e1) <> λE(e2), then e1 ≤E e2 or e2 ≤E e1.
The subdomainT of P comprises all pomsets inP that are traces. In particular, the
empty pomsetε is in T. When representing a finite pomset inP we will also use a
more concrete, set-based notation like writing{snd(s, r,m) ≤ rcv(s, r, m)} instead of
[({e1, e2}, {(e1, e1), (e1, e2), (e2, e2)}, {e1 7→ snd(s, r, m), e2 7→ rcv(s, r,m)})]. Sim-
ilarly, for the representation of finite traces inT, as in the example above, we also
employ the more succinct notationsnd(s, r,m) · rcv(s, r,m).

On pomsets inP, the filtering relationfilter(M) : P → ℘P removes some el-
ements ofp whose labels show a message inM . More precisely, we first define
filter(M) on event-labelled sets: LetE be a set andλ : E → E a labelling func-
tion; thenE′ ∈ filter(M)(E, λ) if E′ ⊆ E and, if e ∈ E \ E′, then (λ(e) =
snd(s, r, m) ∨ λ(e) = rcv(s, r, m)) ∧ m ∈ M . For an event-labelled partial or-
der (E,≤E , λE) we set(E′,≤E ∩ (E′ × E′), λE�E′) ∈ filter(M)(E,≤E , λE) if
E′ ∈ filter(M)(E, λE). Finally, we extend these definitions to event-labelled pom-
sets by setting[(E′,≤E′ , λE′)] ∈ filter(M)([(E,≤E , λE)]) if (E′,≤E′ , λE′) ∈
filter(M)(E,≤E , λE), which is obviously well-defined. Note thatfilter(M) restricted
to traces delivers traces, i.e.,filter(M) is also a relationfilter(M) : T→ ℘T.

4.2 The Positive Fragment

Let us begin considering interactions with no occurrence of negation or assertion, which
we call thepositive fragmentof the language. The positive satisfaction relation between
traces and interactions, denoted byt |=p S and readt positively satisfiesS, wheret
is a trace andS an interaction of the positive fragment, is inductively defined on the

89

t |=p B if t ∈ lin(B)

t |=p strict(S1, S2) if ∃t1, t2 . t = t1 ; t2 ∧ t1 |=p S1 ∧ t2 |=p S2

t |=p seq(S1, S2) if ∃t1, t2 . t ∈ lin(t1 ;<> t2) ∧ t1 |=p S1 ∧ t2 |=p S2

t |=p par(S1, S2) if ∃t1, t2 . t ∈ lin(t1 ‖ t2) ∧ t1 |=p S1 ∧ t2 |=p S2

t |=p loop(0, 0, S) if t = ε

t |=p loop(0, n + 1, S) if t = ε ∨ t |=p seq(S, loop(0, n, S))

t |=p loop(m + 1, n + 1, S) if t |=p seq(S, loop(m, n, S))

t |=p loop(m,∞, S) if ∃n ≥ m . t |=p loop(m, n, S)

t |=p ignore(M , S) if ∃t1 . t1 ∈ filter(M)(t) ∧ t1 |=p S

t |=p alt(S1, S2) if t |=p S1 ∨ t |=p S2

(a) Semantics of the positive fragment

t |=p neg(S) if t = ε

t |=p assert(S) if t |=p S

t |=n strict(S1, S2) if ∃t1, t2 . t = t1 ; t2 ∧ (t1 |=n S1 ∨ (t1 |=p S1 ∧ t2 |=n S2))

t |=n seq(S1, S2) if ∃t1, t2 . t ∈ lin(t1 ;<> t2) ∧ (t1 |=n S1 ∨ (t1 |=p S1 ∧ t2 |=n S2))

t |=n par(S1, S2) if ∃t1, t2 . t ∈ lin(t1 ‖ t2) ∧ ((t1 |=n S1 ∧ t2 |=n S2) ∨
(t1 |=n S1 ∧ t2 |=p S2) ∨ (t1 |=p S1 ∧ t2 |=n S2))

t |=n loop(0, n + 1, S) if t |=n seq(S, loop(0, n, S))

t |=n loop(m + 1, n + 1, S) if t |=n seq(S, loop(m, n, S))

t |=n loop(m,∞, S) if ∃n ≥ m . t |=n loop(m, n, S)

t |=n ignore(M , S) if ∃t1 . t1 ∈ filter(M)(t) ∧ t1 |=n S

t |=n alt(S1, S2) if t |=n S1 ∧ t |=n S2

t |=n neg(S) if t 6= ε ∧ t |=p S

t |=n assert(S) if t 6|=p S

(b) Extended semantics for negation

Table 2.Semantics of interactions

structure ofS as shown in Tab. 2(a). Therein,B ranges over basic interactions. This
semantics is a reformulation of Störrle’s definition [9] using pomsets.

In particular, the only trace positively satisfying the emtpy interactionskip is the
empty pomset. A basic interactionB = {snd(s, r,m) ≤ rcv(s, r,m)} is positively
satisfied solely by the tracetB = snd(s, r,m) · rcv(s, r,m).

4.3 Negation

The semantics of a negated interactionneg(S) is classically defined by making positive
for neg(S) all those traces that are not positive forS and making negative forneg(S) all
those traces that are positive forS. Such a definition, however, rules out inconclusive

90

traces. In general, thus, we need to distinguishpositive, negative, andinconclusiveruns
for an interaction. We writet |=n S if t negativelysatisfiesS. The inductive definition
of |=p is extended and the relation|=n is inductively defined on the structure ofS as
shown in Tab. 2(b).

In particular, we define|=n for all combined interaction fragments and, in accor-
dance with Haugen and Stølen [3], we regard the empty trace as being positive for
neg(S). For the combined fragmentsstrict(−,−) andseq(−,−) we adopt the view that
only those traces are negative that either run through the first operand negatively or fulfil
the first operand positively but the second operand negatively. A similar stance is taken
towardspar(−,−) where either both operands have to be run through negatively or one
of the operands negatively the other one positively in order to make a run negative. In
alt(−,−) both operands have to be run through negatively. Our semantics for assertion
is the “assertion as affirmation” interpretation of Störrle [8].

Störrle [8] considers three different interpretations ofneg(S). All of them coincide
in declaring negative forneg(S) all those traces that are positive forS. For the positive
traces ofneg(S), interpretation (1), called “not the [valid] traces ofS”, assigns no pos-
itive traces toneg(S); interpretation (2), called “anything but the [valid] traces ofS”,
makes all traces that are not positive forS the positive traces ofneg(S); interpretation
(3) declares the negative traces ofS to be the positive traces forneg(S). Employing
the interpretations (1) or (3), the usage of negation inside combined fragments leads to
the undesirable consequence that the overall interaction shows no positive traces at all.
Interpretation (2) excludes the possibility of inconclusive traces forneg(S).

4.4 Examples

Let Bi be the basic interactions{snd(si, ri,mi) ≤ rcv(si, ri,mi)} (i = 1, 2, 3), where
all mi are different, and letti be the tracessnd(si, ri,mi) · rcv(si, ri,mi) (i = 1, 2, 3).
We then have that

– t1 |=p strict(B1, neg(B2))
– t1; t2 |=n strict(B1, neg(B2))
– t1; t2 |=n strict(B1, strict(neg(B2), B3))
– t1; t3 |=p strict(B1, strict(neg(B2), B3))
– t1; t2; t3 |=n strict(B1, strict(neg(B2), B3))
– t2 |=p par(neg(B2), B2) and
– t2 6|=n par(neg(B2), B2).

A more interesting case is given by the following two facts:

– t2 |=p strict(neg(B2), B2) and
– t2 |=n strict(neg(B2), B2).

Thus,t2 is simultaneously positive and negative forstrict(neg(B2), B2). We therefore
call strict(neg(B2), B2) an overspecified interaction.

Definition 1. An interactionS is overspecifiedif there exists a tracet with t |=p S and
t |=n S.

For the sameB2, a further overspecified interaction ispar(assert(B2), neg(B2)). The
tracet2 satisfies this interaction both positively and negatively.

91

4.5 Properties

It is easy to check that both forms of sequential composition are associative, and that
parallel and alternative composition are associative and commutative.

Lemma 1. LetS1, S2, andS3 be interactions, andt be a trace.

1. t |=p strict(S1, strict(S2, S3)) iff t |=p strict(strict(S1, S2), S3)
2. t |=p seq(S1, seq(S2, S3)) iff t |=p seq(seq(S1, S2), S3)
3. t |=p par(S1, par(S2, S3)) iff t |=p par(par(S1, S2), S3)
4. t |=p par(S1, S2) iff t |=p par(S2, S1)
5. t |=p alt(S1, alt(S2, S3)) iff t |=p alt(alt(S1, S2), S3)
6. t |=p alt(S1, S2) iff t |=p alt(S2, S1)

Furthermore, all these propositions also hold when replacing|=p by |=n.

By abuse of notation we thus abbreviate e.g.strict(S1, strict(S2, strict(. . . , Sn))) to
strict(S1, S2, . . . , Sn) andalt(S1, alt(S2, alt(. . . , Sn))) to alt(S1, S2, . . . , Sn).

Basic interactions are not negatively satisfiable.

Lemma 2. t 6|=n B for any basic interactionB and any tracet.

The satisfaction relations|=p and|=n as defined in Sects. 4.2 and 4.3 are not con-
clusive, that is, there exist inconclusive traces.

Lemma 3. There exist a tracet and an interactionS with t 6|=p S andt 6|=n S.

Proof. Take forS the basic interactionB = {snd(s, r, m) ≤ rcv(s, r,m)} and fort the
tracercv(s, r,m) · snd(s, r,m).

The operatorassert(−) discards inconclusive traces of its operand, that is, it estab-
lishes the link between the semantics of interactions and classical two-valued logic.

Lemma 4. Let S be an interaction andt be a trace. Thent |=p assert(S) or t |=n

assert(S).

On the syntactic structure of interactions we define a well-founded ordering, which
can be used to demonstrate further properties of interactions by induction.

Definition 2. We define a partial order on interaction terms as the reflexive and transi-
tive closure of the following binary relation:

skip ≤ S S ≤ neg(S)
S1 ≤ strict(S1, S2) S2 ≤ strict(S1, S2)
S1 ≤ seq(S1, S2) S2 ≤ seq(S1, S2)
S1 ≤ par(S1, S2) S2 ≤ par(S1, S2)
S1 ≤ alt(S1, S2) S2 ≤ alt(S1, S2)
S ≤ ignore(M , S) S ≤ assert(S)

seq(S, loop(m, n, S)) ≤ loop(m, n + 1, S) loop(m, n, S) ≤ loop(m,∞, S)

whereS, S1, andS2 are arbitrary interactions, andm andn natural numbers.

Lemma 5. The above defined ordering≤ on interactions is well founded, i.e., there
exists no infinite descending chainS1 ≥ S2 ≥ · · · ≥ Sn ≥ · · · .

92

5 Negation Revisited

The non-classical interpretation of negation is difficult to deal with. Above all, the need
for two satisfaction relations, one positive and one negative, makes it hard to decide
what kind of trace is a given one for an interaction, i.e., if the trace is positive, inconclu-
sive, or negative for the interaction. When reconsidering the semantics introduced in the
previous section, we firstly discover that negation is unnecessary for testing positive sat-
isfaction. Secondly, when handling negative satisfaction, negation is of course needed,
but it can be replaced by a classical version. We introduce therefore the language of
interactions in the classical senseas opposed to the language of UML 2.0 interactions
considered so far.

We begin by reinvestigating the interplay between negation and positive satisfaction.
Observe that a negative interaction can only be positively satisfied by the empty process,
the same asskip. It therefore seems natural, when it comes to check positive satisfaction,
to replace any negative subinteraction byskip.

Definition 3. The functionσ from interactions to interactions of the positive fragment
is given by induction on the syntactic structure of its argument as follows:

σ(B) = B

σ(strict(S1, S2)) = strict(σ(S1), σ(S2))

σ(seq(S1, S2)) = seq(σ(S1), σ(S2))

σ(par(S1, S2)) = par(σ(S1), σ(S2))

σ(loop(m, n, S)) = loop(m, n, σ(S))

σ(ignore(M , S)) = ignore(M , σ(S))

σ(alt(S1, S2)) = alt(σ(S1), σ(S2))

σ(neg(S)) = skip

σ(assert(S)) = σ(S)

whereB ranges over basic interactions,S, S1, andS2 over interactions,M over sets
of messages,m over the natural numbers, andn over the natural numbers or∞.

Lemma 6. LetS be an interaction andt be a trace. Then,t |=p S iff t |=p σ(S).

This means that the positive fragment of the language and the positive satisfaction
relation defined for it as given in Sect. 4.2 and in Tab. 2(a) are sufficient for testing
positive satisfaction of arbitrary interactions.

Now we turn our attention to negative satisfaction. The question is if something
similar cannot be done for it as well. More precisely, it would be advantageous to get
rid of the negative satisfaction relation by defining it in terms of the positive one. This
is obviously true for a sublanguage, namely for sequences of interactions involving a
negated subinteraction.

Lemma 7. Let S = strict(S1, neg(S′), S2) be an interaction withS1, S′, andS2 from
the positive fragment andt be a trace. Then,t |=n S iff there exists a prefixt′ of t such
that t′ |=p strict(S1, S′).

93

This result, however, cannot be generalised to the full language of interactions: a
binary logic without negation is not enough. A binary logic with classical negation,
on the contrary, does suffice. We add an operatornot(−) to the positive fragment of
UML 2.0 interactions, which gives rise to the so-called interactions in classical sense.
This new unary operator is provided with the classical semantics of negation. We define
a transformation from UML 2.0 interactions to interactions in the classical sense, and
show that the positive satisfaction of the resulting interaction is equivalent to negative
satisfaction of the given one.

Definition 4. The syntax ofinteractions in the classical senseis given by the syn-
tax in Tab. 1 whereneg(−) and assert(−) are removed andnot(−) is added to
CombinedFragment.

The positive semantics of interactions in the classical sense is given by the semantics
for the positive fragment of UML 2.0 interactions in Tab. 2(a) and

t |=p not(S) if t 6|=p S

We furthermore use the following abbreviations:

Any = ignore(M, skip)

None = not(Any)

and(S1, S2) = not(alt(not(S1), not(S2)))

Definition 5. The functionν from UML 2.0 interactions to interactions in the classical
sense is given by induction on the syntactic structure of its argument as follows:

ν(B) = None

ν(strict(S1, S2)) = alt(strict(ν(S1), Any), strict(σ(S1), ν(S2)))

ν(seq(S1, S2)) = alt(seq(ν(S1), Any), seq(σ(S1), ν(S2)))

ν(par(S1, S2)) = alt(par(ν(S1), ν(S2)), par(ν(S1), σ(S2)), par(σ(S1), ν(S2)))

ν(loop(m, n, S)) = and(loop(m, n, ν(S)), not(skip))

ν(ignore(M , S)) = ignore(M , ν(S))

ν(alt(S1, S2)) = and(ν(S1), ν(S2))

ν(neg(S)) = and(σ(S), not(skip))

ν(assert(S)) = not(σ(S))

whereB ranges over basic interactions,S, S1, andS2 over interactions,M over sets
of messages,m over the natural numbers, andn over the natural numbers or∞.

Lemma 8. LetS be a UML 2.0 interaction andt be trace. Thent |=n S iff t |=p ν(S).

Proof. By induction on the partial ordering≤ on UML 2.0 interactions.

Summarising, a closer look at negation leads to the following two results:

t |=p S if t |=p σ(S)
t |=n S if t |=p ν(S)

94

whereS is an arbitrary UML 2.0 interaction,σ(S) is an interaction of the positive frag-
ment of the language of UML 2.0 interactions obtained in terms ofS, andν(S) is an
interaction in the classical sense in terms ofS. Notice that the positive fragment of the
language of UML 2.0 interactions is also the positive fragment of the language of inter-
actions in classical sense. More importantly, by means of these two transformations,σ
andν, we do not need to test negative satisfaction. This observation may be useful for
checking overspecification, but we defer a closer investigation to future work.

6 Implementation and Refinement

Having a formal semantics for interactions, further concepts can be defined in terms
of it. We introduce the notions of implementation of an interaction by a process, of
equivalence of interactions, and of refinement of an interaction by another one. These
notions show a number of useful properties, and are intended for formal verification.

Definition 6. A processI is an implementationof an interactionS, writtenI |= S, if

1. there existst ∈ lin(I) with t |=p S, and
2. t 6|=n S for everyt ∈ lin(I).

An interactionS is implementableif there is a processI such thatI |= S; it is contra-
dictory if it is not implementable.

The following lemma ensures that any interaction admits positive traces and thus
that the first condition of the implementation relation is always satisfiable.

Lemma 9. For every interactionS there exists a tracet with t |=p S.

Proof. By induction on the partial ordering≤ and the fact thatε |=p neg(S).

This lemma, however, does not imply that any interaction is implementable.
Indeed, having a positive trace is not enough, since this very trace may also be
negative for the same interaction. Take for instance the overspecified interaction
strict(neg(B2), B2) of Sect. 4.4: its only positive tracet2 is at the same time nega-
tive. Nonetheless, an overspecified interaction may be implementable, that is, overspec-
ified interactions are not necessarily contradictory. Take for instance the interaction
S = alt(seq(neg(B2), B1), seq(neg(B2), B2)) with B1 andB2 as in Sect. 4.4. The trace
t2 is both positive and negative forS, i.e., botht2 |=p S andt2 |=n S, whereas the
tracet1 is only positive forS, i.e.,t1 |=p S andt1 6|=n S. Thus{t1} |= S.

Moreover, note that a combination of interactions, each equipped with its own im-
plementation, not necessarily is implemented by the same combination of the corre-
sponding implementations. Take for instanceS1 = neg(B1), S2 = neg(B2), I1 =
{t2, ε}, andI2 = {t1, ε}, with Bi andti as defined in Sect. 4.4 (i = 1, 2). It is easy to
check that, whileIi |= Si (i = 1, 2), it is not true thatI1 ‖ I2 |= par(S1, S2).

A notion of implementation allows the definition of an equivalence relation.

Definition 7. Two interactionsS1 andS2 are equivalent, denoted byS1 ≡ S2, when-
everI |= S1 iff I |= S2 for any processI.

95

Furthermore, the implementation relation gives rise to a model-theoretic notion of
refinement.

Definition 8. An interactionS′ refinesan interactionS, writtenS ; S′, if any imple-
mentation ofS′ is also an implementation ofS, i.e., if I |= S′ impliesI |= S for any
implementationI.

Lemma 10. Refinement is a partial order w.r.t. the equivalence on interactions, i.e.,
refinement is reflexive, transitive, and antisymmetric w.r.t.≡.

An example of an interaction refinement is provided by the removal of disjunctions.

Lemma 11. alt(S1, S2) ; Si for i = 1, 2.

Proof. Let I |= S1. On the one hand, there existst ∈ lin(I) with t |=p S1 and thus
t |=p alt(S1, S2). On the other hand,t 6|=n S1 and hencet 6|=n alt(S1, S2) for all t ∈
lin(I). The caseI |= S2 is treated analogously.

Let us now investigate the properties of the refinement relation. As the following
lemma shows, in refinement the set of genuine positive traces cannot be enlarged, neg-
ative traces remain negative, and at least one positive trace is kept.

Lemma 12. LetS andS′ be interaction withS ; S′.

1. For all tracest, if t 6|=p S or t |=n S, thent 6|=p S′ or t |=n S′.
2. If S′ is implementable, then for all tracest, t |=n S impliest |=n S′.
3. If S′ is implementable, then there is a tracet such thatt |=p S andt |=p S′.

Proof. For claim (1), supposet |=p S′ andt 6|=n S′. Then{t} |= S′, and also{t} |= S
sinceS ; S′. Thust |=p S andt 6|=n S which contradictst 6|=p S or t |=n S.

For claim (2), supposet 6|=n S′ and letI be any process such thatI |= S′. Then
alsoI ∪ {t} |= S′, and thusI ∪ {t} |= S becauseS ; S′, which contradictst |=n S.

For claim (3), assume thatt 6|=p S for all t |=p S′. SinceS′ is implementable, there
is a trace such thatt |=p S′ but t 6|=n S′. Then{t} |= S′, but{t} 6|= S.

An inconclusive trace can indeed become negative. Recall for instance the interac-
tion B2 and the tracet2 from Sect. 4.4: tracet2 is inconclusive forskip and negative
for neg(B2), whereskip ; neg(B2). On the other hand, a positive trace may become
inconclusive, as witnessed by Lemma 11.

A desirable property of refinement is that the operators be monotonic with respect
to it. For instance, for a proof of monotonicity of disjunction w.r.t. refinement, we need
to show that a process implementingalt(S′

1, S2) also implementsalt(S1, S2) if S1 ; S′
1.

Unfortunately this is not true. Consider the following constellation:

S1 = B1 S′
1 = alt(seq(neg(B2), B1), seq(neg(B2), B2))

S2 = B3 t = t2

whereB1, B2, B3, and t2 are the interactions resp. trace of Sect. 4.4; in particular,
S1 ; S′

1. We have then the following facts:

t |=p S′
1 andt |=n S′

1 t 6|=p S1

t 6|=p S2 andt 6|=n S2

96

S1 ;p S′
1

strict(S1, S2) ;p strict(S′
1, S2)

S2 ; S′
2

strict(S1, S2) ; strict(S1, S′
2)

S1 ;p S′
1

seq(S1, S2) ;p seq(S′
1, S2)

S2 ; S′
2

seq(S1, S2) ; seq(S1, S′
2)

S1 ;p S′
1

par(S1, S2) ;p par(S′
1, S2)

S1 ; S′
1

alt(S1, S2) ; alt(S′
1, S2)

S ; S′

neg(S′) ; neg(S)

S ; S′

assert(S) ; assert(S′)

Table 3.Compositional refinements of interactions

that is,{t} |= alt(S′
1, S2) and{t} 6|= alt(S1, S2), i.e.,alt(S1, S2) 6; alt(S′

1, S2).
When restricting ourselves to refinements by non-overspecified interactions, dis-

junction indeed is monotonic w.r.t. refinement.

Lemma 13. Let S1, S′
1, andS2 be interactions and letS′

1 be implementable and not
overspecified. IfS1 ; S′

1, thenalt(S1, S2) ; alt(S′
1, S2).

Proof. Let I be a process such thatI |= alt(S′
1, S2). Let t ∈ lin(I) be a trace ofI. Then

t 6|=n alt(S′
1, S2). In particular,t 6|=n S′

1 or t 6|=n S2 and thus, by Lemma 12(2),t 6|=n S1

or t 6|=n S2, that is,t 6|=n alt(S1, S2).
Moreover, there is at ∈ lin(I) with t |=p alt(S′

1, S2), i.e., t |=p S′
1 or t |=p S2. If

t |=p S2 thent |=p alt(S1, S2). If t |=p S′
1 thent 6|=n S′

1, asS′
1 is not overspecified, and

thust |=p S1 by Lemma 12(1); hence againt |=p alt(S1, S2).

However, for proving the monotonicity of the sequential operators in the first ar-
gument w.r.t. refinement, the restriction to refinements by non-overspecified interac-
tions is not enough. In fact, in demonstrating thatS1 ; S′

1 implies strict(S1, S2) ;

strict(S′
1, S2), we have to assume that all positive traces ofS1 are still positive inS′

1: If
a positive trace ofS1 becomes inconclusive inS′

1, there may be more negative traces in
strict(S1, S2) than instrict(S′

1, S2). We therefore introduce a restricted refinement rela-
tion ;p that keeps all positive traces.

Definition 9. An interactionS′ positively refinesan interactionS, writtenS ;p S′, if
S′ refinesS and for all tracest it holds: if t |=p S thent |=p S′.

Some results on the monotonicity of interaction operators w.r.t. the refinement rela-
tions; and;p are summarised in Tab. 3, whereS, S1, S2, S′, S′

1, andS′
2 are inter-

actions andS′, S′
1 andS′

2 are implementable and not overspecified. A more complete
calculus for interaction refinement is subject of future study.

7 Discussion

Lemma 7 concludes that, for a given interaction, any trace is negative if it completely
traverses a negative region, independently of the steps performed afterwards, if any. The

97

proposal of Haugen and Stølen [3] states that “[. . .] any trace that [completely traverses
a negative region] is a negative scenario. Anything may happen [afterwards], it will
never make it positive.” It is not explicitly said that further steps cannot make the trace
inconclusive. If in particular their proposal allows the trace to become inconclusive,
then the semantics of Sect. 4 above is more restrictive.

Indeed, this is not a merely speculation of ours. The example used there is that of a
restaurant, where a customer orders and is served a beef, including an inbetween neg-
ative subinteraction that forbids to burn the meat. Intuitively, hence, if in fact the meat
burns in the oven, the obvious thing to do is to take it from the oven and not to bring
it to the customer’s table. This means that a trace is only negative if, after traversing
the negative region, the next positive region is exhaustively traversed as well. It there-
fore seems that a trace is negative if it traverses all positive regions plus at least one
negative region. A big disadvantage of this interpretation is that a semantic definition
for it cannot be compositional. Compositionality is not just a comfortable mathematical
property, it allows for instance an on-the-fly recognition of a negative trace (or to warn
a running system from generating a negative trace), since decisions are taken locally,
i.e., independently of what happened before or what will happen henceforth.

The semantics of Sect. 4, plainly worded, states that “the trace isbad as soon as it
leaves a negative region, it isgoodif both it is exhaustive (i.e., the interaction does not
specify any event beyond the trace’s last event) and it only traverses positive regions,
and it is inconclusiveotherwise.” The key point here is that a trace, which has com-
pletely traversed a negative region, is definitively negative. We do think that this is a
better choice, and hence put it at the community’s disposal for discussion.

A further deviation from the proposal of Haugen and Stølen [3] is the existence
of overspecified interactions. The cited work states that “the same trace cannot be both
positive and negative.” We dispute the convenience of this requirement. Consider any of
the overspecified interactions shown above, and a trace that is both positive and negative
for the interaction. It is by far not obvious how to rule out one of both possibilities (i.e.,
deciding if the trace is positive or negative) in a non-arbitrary manner, and making this
trace inconclusive is capricious.

Let us finally consider the concepts of supplementing, narrowing and detailing by
Haugen and Stølen [3]. Supplementing means reducing the set of inconclusive traces
by making some of them either positive or negative; in doing so, positive (negative)
traces remain positive (negative). Narrowing means reducing the set of positive traces
by making some of them negative; inconclusive (negative) traces remain inconclusive
(negative). Detailing consists in providing a translation from a more detailed (concrete)
interaction to a given (abstract) interaction; it leaves the sets of positive, negative, and
inconclusive traces unchanged. These notions are colloquially defined using the three
types of traces associated with an interaction; as with our refinement relation, there is
no clue on how to define those in syntactical terms. Our refinement relation is some-
how supplementing and narrowing at the same time; supplementing cannot be defined
in terms of refinement, since supplementing may make positive an inconclusive trace.
The spirit behind all these concepts, however, makes them difficult to compare, since
supplementing and narrowing address design evolution, whereas refinement is a tool for
formal verification.

98

8 Conclusions and Outlook

The contribution of the present article is twofold. On the one hand, it defines a seman-
tics for UML 2.0 interactions that is both formal and consistent with the standard [6].
This proposal is compared with earlier ones. On the other hand, a formal semantics al-
lows a mathematically precise definition of implementation and of refinement, such that
these relations can be formally proved. These notions show some desirable and some
questionable properties, so that they may be subject to further adjustments. They never-
theless set the ground for lifting UML 2.0 to a formal design technique, a sine qua non
for its use in the development of critical systems.

Some UML 2.0 operators for interactions were disregarded, namelybreak and
critical, and also message parameters, conditions, and time. We plan to extend the se-
mantics above to include these other features of UML 2.0. The semantics for OCL/RT
of [1] can be a good starting point for traces which include time and on which con-
ditions are checkable. A calculus for formal verification is the utmost challenge. This
matter can be addressed once implementation and refinement have reached a stable, i.e.,
broadly accepted, definition.

Acknowledgements.We thank Øystein Haugen and Harald Störrle for fruitful discus-
sions.

References

1. Maŕıa Victoria Cengarle and Alexander Knapp. Towards OCL/RT. In Lars-Henrik Eriks-
son and Peter Alexander Lindsay, editors,Proc. 11th Int. Symp. Formal Methods Europe
(FME’02), volume 2391 ofLect. Notes Comp. Sci., pages 390–409. Springer, Berlin, 2002.

2. Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence Charts.Formal
Methods in System Design, 19(1):45–80, 2001.

3. Øystein Haugen and Ketil Stølen. STAIRS — Steps to Analyze Interactions with Refinement
Semantics. In Perdita Stevens, Jon Whittle, and Grady Booch, editors,Proc. 6th Int. Conf.
Unified Modeling Language (UML’03), volume 2863 ofLect. Notes Comp. Sci., pages 388–
402. Springer, Berlin, 2003.

4. International Telecommunication Union. Message Sequence Chart (MSC). Recommendation
Z.120, ITU-T, Geǹeve, 1999.

5. Alexander Knapp. A Formal Semantics for UML Interactions. In Robert France and Bernhard
Rumpe, editors,Proc. 2nd Int. Conf. Unified Modeling Language (UML’99), volume 1723 of
Lect. Notes Comp. Sci., pages 116–130. Springer, Berlin, 1999.

6. Object Management Group. Unified Modeling Language Specification, Version 2.0 (Super-
structure). Adopted draft, OMG, 2003.http://www.omg.org/cgi-bin/doc?ptc/
03-08-02 .

7. Vaughan Pratt. Modeling Concurrency with Partial Orders.Int. J. Parallel Program.,
15(1):33–71, 1986.

8. Harald Sẗorrle. Assert, Negate and Refinement in UML-2 Interactions. In Jan Jürjens, Bern-
hard Rumpe, Robert France, and Eduardo B. Fernandez, editors,Proc. Wsh. Critical Sys-
tems Development with UML (CSDUML’03), San Francisco, 2003. Technische Universität
München, Technical report TUM-I0317.

9. Harald Sẗorrle. Semantics of Interactions in UML 2.0. InProc. IEEE Symp. Visual Languages
and Formal Methods (VLFM’03), Auckland, 2003.

99

A UML Class Diagram Analyzer

Tiago Massoni, Rohit Gheyi, and Paulo Borba

Informatics Center
Federal University of Pernambuco, Brazil

{tlm,rg,phmb}@cin.ufpe.br

Abstract. Automatic analysis of UML models constrained by OCL in-
variants is still an open research topic. Especially for critical systems,
such tool support is important for early identification of errors in mod-
eling, before functional requirements are implemented. In this paper,
we present ideas on an approach for automatic analysis of UML class
diagrams, according to a precise semantics based on Alloy, a formal
object-oriented modeling language. This semantics permits the use of
Alloy’s tool support for class diagrams, by applying constraint solving
for automatically finding valid snapshots of models. This kind of automa-
tion helps the identification of inconsistencies or under-specified models
of critical software, besides allowing checking of properties about these
models.

1 Introduction

As in other engineering fields, modeling can be a useful activity for tackling
significant problems in software development. As a de-facto standard, the Uni-
fied Modeling Language (UML) [1] plays a significant role. In particular, the
development of high-quality critical systems can benefit from features offered by
a standard visual modeling notation like UML, since traditional code-driven
approaches are highly risky and often error-prone for such complexity. Fur-
ther, business rules can be precisely expressed by Object Constraint Language
(OCL) [2] invariants attached to class diagrams, enabling the specification of
constraints over complex states of critical systems.

As the use of OCL for critical systems substantially grows, the lack of stan-
dardized formal semantics for the language does not stimulate the development
of tools supporting analysis and verification of OCL expressions in UML mod-
els. When using class diagrams for modeling critical systems, the absence of tool
support restrains the developer’s task, since subtle structural modeling errors
may be considerably hard to detect. For instance, inappropriate OCL invariants
may turn a model over-constrained, or even inconsistent (i.e. the model allows
no implementation). Likewise, models lacking important constraints may allow
incorrect implementations.

In this paper, we propose an approach for automatic analysis of class di-
agrams, according to a precise semantics based on Alloy [3], a formal object-
oriented modeling language founded on first-order logic. Alloy is suitable for

100

2

object modeling, employing sets and relations as a simple semantic basis for
objects and its relationships. We defined a number of mapping rules between
UML/OCL and Alloy elements, resulting in equivalent Alloy models from UML
class diagrams annotated with OCL invariants. By using this approach, we can
leverage to UML/OCL the benefits from the powerful tool support offered by
the Alloy Analyzer [4].

Alloy’s simple semantics allowed powerful tool support represented by the
Alloy Analyzer, which is a constraint solver that finds instances of formulae rep-
resenting models, backed by an off-the-shelf SAT solver [4]. This approach allows
automatic generation of snapshots satisfying model constraints, which can be
significantly useful for verifying whether models are over or under-constrained.
Similarly, assertions can be made against models, which are checked by exhaus-
tive search for counterexamples refuting the assertions. Due to the undecidability
of such analysis, they are parameterized by a scope (provided by the user), which
assigns a bound of objects to each entity.

Since the search for a solution is limited by a scope, the absence of an instance
does not automatically show that a formula is inconsistent. However, such level of
automation can cover significantly more cases than any kind of testing, allowing
early identification of bugs in functional requirements of critical systems. More
specifically, this analysis is able to generate all valid snapshots of a model within
a given scope. The Alloy language and its analysis has been successfully used for
modeling critical systems, including air-traffic control [5] and a proton therapy
machine [6]. We believe that similar benefits can be achieved by applying this
automatic analysis to UML/OCL.

A proposed tool support is closely related [7]. The USE tool offers a use-
ful evaluation of a user-provided snapshot of a model, checking whether this
instance satisfies the model invariants. In contrast, the Alloy Analyzer offers
solving, which involves searching for instances satisfying a given constraint. The
latter may be more effective as an instrument for finding unexpected problems
in scenarios where it is unfeasible to supply a representative set of test cases.

The remainder of this paper is organized as follows. Section 2 describes the
Alloy language and the underlying tool support. In Section 3, we show the map-
ping rules for transforming UML class diagrams into Alloy specifications. Sec-
tion 4 describes how the Alloy’s tool support can be useful for analyzing UML
class diagrams. Section 5 describes related work, whereas Section 6 presents our
conclusions and future work.

2 Alloy

Alloy is a formal modeling language based on first-order logic, allowing specifi-
cation of – primarily structural – properties in a declarative fashion. In general,
models in Alloy are described at a high level of abstraction, ignoring implemen-
tation details. With Alloy, one can apply object modeling in a similar fashion to
UML class diagrams, with the additional benefit of a simple semantics, allow-
ing automatic analysis. Logical formulae can be used to enforce business rules,

101

3

playing a role similar to OCL invariants. In this section, we first discuss the
language, and then provide more detail on its automatic analysis.

2.1 The Alloy Language

The language is strongly typed, assuming a universe of objects partitioned into
subsets, each of which associated with a basic type. An Alloy model is a sequence
of paragraphs of two kinds: signatures, used for defining new types; and formula
paragraphs, such as facts and predicates, used to record invariants. Analogous
to classes, each signature denotes a set of objects. These objects can be mapped
by the relations (associations) declared in the signatures. A signature paragraph
may introduce a collection of relations.

As an example, we show an Alloy model for part of the banking system,
where each bank contains a set of accounts and a set of customers. An account
can only be a checking account. The next Alloy fragment declares four signatures
representing system entities, along with their relations:

sig Bank {

accs: set Account,

custs: set Customer

}

sig Customer {}

sig Account {}

sig ChAcc extends Account {}

In the declaration of Bank, the set keyword specifies that the accs relation
maps each object in Bank to a set of objects in Account, exactly as a 1-N
association in UML. ChAcc denotes one kind of account. In Alloy, one signature
can extend another one by establishing that the extended signature is a subset
of the parent signature. For example, the set of ChAcc objects is a subset of the
Account objects.

A fact is a formula paragraph. It is used to package invariants about certain
sets. Differently from OCL invariants, a fact may not introduce a context for its
formulae, allowing expression of global properties on models. Also, fact formu-
lae are declared as a conjunction. The following code introduces a fact named
BankProperties, establishing general properties about the previously declared
signatures and relations.

fact BankProperties {

Account = ChAcc

all a:Account | lone a.~accs

}

The first formula states that every account is a checking account; the second
one states that every account is related to at most one bank by accs. The all
keyword is the universal quantifier. The expression ~accs denotes the transpose
of accs, while lone states that a.~accs yields a relation with at most one object.

102

4

The join of relations1. a.~accs is the set of all elements for which there exists
an element of a related to it by the relation ~accs (direct relation image). The
expression yields the bank in which the a account is stored. Figure 1 shows how
this model could be represented by a UML class diagram annotated with OCL
invariants.

Fig. 1. Banking Analogous UML Class Diagram.

2.2 The Alloy Analyzer

Alloy was simultaneously designed with a fully automatic tool that can simulate
models and check properties about them. The tool translates the model to be
analyzed into a boolean formula. This formula is transferred to an SAT solver,
and the solution is translated back by the Alloy Analyzer into Alloy. The two
kinds of analysis consist in binding objects to signatures and relations, searching
for a combination of values that make the translated boolean formula true [4].

In particular, simulation generates structures without requiring the user to
provide sample inputs or test cases. If the tool finds a binding of objects making
the formula true, this binding constitutes a valid snapshot. If we consider, from
the previous banking example, the Bank and Account signatures, along with
accs relation, a valid snapshot is shown below:

Bank = {(B1),(B2),(B3),(B4),(B5)}

Account = {(A1),(A2),(A3),(A4),(A5)}

accs = {(B1,A1),(B1,A2),(B2,A3),(B3,A4),(B5,A5)}

In this representation, the Bx and Ax symbols represent Bank and Account
objects, respectively. The parentheses are used for tuples (scalar elements are
one-element tuples). Notice that every Account object is related to at most one

1 In Alloy, set elements are designed as singleton unary relations.

103

5

Bank object in accs, as modeled in the second formula of the BankProperties
fact.

On the other hand, assertion checking generates counterexamples - valid
snapshots for which an expected property does not hold. The tool searches for
a binding of objects which makes true the formula representing the model con-
joined with the negated formula of a given logical assertion. A valid snapshot is
a counterexample to that assertion. Considering the previous Alloy model, and
an assertion stating that each account is associated with one bank (in Alloy:
Account in Bank.accs), a possible counterexample could be as follows, where
the A3 account is not related to any bank:

Bank = {(B1),(B2)}

Account = {(A1),(A2),(A3)}

accs = {(B1,A1),(B2,A2)}

The tool does not provide a complete analysis. Instead, it conducts a search
within a finite scope chosen by the user, bounding the number of elements in
each basic type [4]. For instance, the examples above were analyzed within a
scope of five (5). The output is either a snapshot or a message that no snapshot
was found in the given scope. When checking a given property, a snapshot is a
counterexample and indicates that the asserted formula was not valid. Theoret-
ically, nothing can be inferred when no snapshot is found. However, gradually
increasing the scope can give the user a greater confidence during the modeling
of critical systems, which helps finding inconsistencies or lack of constraints be-
fore implementation. Billions of state combinations for a model’s signatures and
relations can be covered within a predetermined scope in a matter of seconds,
not requiring any input of test cases from the user. This bounded analysis might
still constrain models involving numeric types [8].

3 A Semantics for UML Class Diagrams

We offer a semantics for UML class diagrams by translation to correspondent
Alloy models. Alloy constructs can represent a number of UML static or dy-
namic constructs, contributing with a semantics to a subset of UML that may
be automatically analyzed. Furthermore, translating a representative subset of
OCL expressions to Alloy is straightforward, since they are both defined for
expressing constraints in object modeling, based on first-order logic.

In order to define mapping rules between UML and Alloy, we focused on
structural properties of class diagrams including OCL invariants, thus exploit-
ing Alloy’s expressiveness for modeling complex state properties of a system.
For that reason, we did not consider some UML constructs, such as operations
(methods) and their effects, besides timing constraints (e.g. {frozen}). Although
this may seem restrictive, we initially focused on aspects that may be extremely
useful in finding problems when modeling complex states. Moreover, Alloy and
its supporting tool have also been used for modeling properties over state transi-
tions [6, 9], which shows the language’s usefulness in behavioral modeling as well.

104

6

We believe that related UML constructs, even other diagrams, can be similarly
analyzed by means of analogous mapping.

Regarding OCL, we only consider class invariants, due to the reasons ex-
plained above. Since recursive operations have an undefined semantics [10], we
do not deal with those in our semantics. Also, numeric types (except integer)
are ignored, due to the nature of Alloy’s analysis, which is scope-limited. Nev-
ertheless, the latest version of the language introduces an improved support for
integer types [8]. Likewise, string type and operations, loop constructs or pack-
aging operations are not considered, since they are implementation-specific (we
are primarily concerned with abstract models). The keyword self is consid-
ered mandatory when expressing context-dependent invariants. We also require
role names for each navigable end in binary associations, which simplifies the
translation.

Our translation rules are divided into two categories: from UML diagram-
matic constructs to Alloy constructs and from OCL invariants to logically-
equivalent Alloy formulae. Most UML diagrams do not offer an agreed precise
semantics, due to its broad applicability in unlimited modeling contexts [11].
We adapted class diagrams to Alloy semantics (sets of objects with relations
as fields), with the purpose of modeling abstract structural aspects of criti-
cal systems. Regarding OCL constraints, we based our translation on the OCL
specification version 1.5 [10]. Basic set theory and predicate calculus guided the
translation rules, neglecting OCL formulae that may present undefined semantics
(such as recursion).

Figure 2 depicts a class diagram describing an extended version of the bank-
ing system. The invariant over Customer states that a customer identifier must
be unique, while the invariant over Account states that it is an abstract class.

Fig. 2. Extended Class Diagram for the Banking System.

Regarding diagrammatic constructs, classes and interfaces are translated to
signatures in Alloy. In addition, binary associations are translated to relations

105

7

declared with the set qualifier. Similarly, attributes also translate to relations.
In our example, Customer and BankCard can be represented in Alloy as follows:

sig Customer {

card: set BankCard,

id: set String

}

sig BankCard {

owner: set Customer

}

A relation is created for each navigable association end, using the opposite
role name. This rule is required due to the limitation in representing navigability
constraints with binary relations in Alloy (a binary relation is bidirectional by
definition). In case we have two navigable ends for an association, each signa-
ture declares a relation for its opposite navigable end, as exemplified by owner
and card. A constraint is added, stating that a relation is the transpose of its
opposite counterpart. Furthermore, multiplicity constraints, such as one (1) for
card and id, are expressed as formulae over signatures’ relations. The com-
position between Bank and Accounts is transformed into a constrained binary
relationship. The added multiplicity constraint (‘1’) on Bank represents coinci-
dent lifetimes between a bank and its accounts, in addition to forbidden sharing
of an account between different banks. These constraints will be all within the
BankProperties fact. The following Alloy fragment describes this fact.

fact BankProperties {

card = ~owner

all c:Customer | #(c.card) = 1

all a:Account | one a.~accs

...

}

The # symbol is the cardinality operator. For example, the second formula
in BankProperties states that there is exactly one object of BankCard mapped
by each customer. In addition, generalization is translated to Alloy’s extends.
The subsequent Alloy fragment shows SavAcc translated signature:

sig SavAcc extends Account {}

OCL invariants are translated to equivalent Alloy formulae, being universally
quantified on self. This limits expression of global properties in OCL, since
universally quantified formulae can be true either if the formula is valid or the
quantified set is empty. Even though Alloy allows global properties without
quantification, we do not intend to fix the problem, as we provide a semantics
for OCL.

Next, we show an Alloy fragment that translates the invariants from the
Account and Customer contexts, which will be defined within BankProperties.
The oclIsTypeOf operation is translated to set membership and isUnique to
an equivalent quantified formula.

106

8

all self: Account | (self in ChAcc) || (self in SavAcc)

all self: Customer | all disj c,c’:Customer | c.id != c’.id

The || operator corresponds to logical disjunction, while in denotes set
membership and ! denotes negation. The disj keyword states that the declared
variables are distinct. As an example, Table 1 formulates these and aditional
mapping rules for OCL expressions, where X,Y denote collections, P,Q denote
logical formulae, a and r denotes a variable and a attribute, respectively.

Table 1. Examples of Mapping Rules from OCL to Alloy.

OCL Alloy

X.oclIsTypeOf(Y) X in Y

X->includes(Y) Y in X

X.allInstances X

X.isUnique(r) all disj a,a’:X | a.r != a’.r

P or Q P || Q

P and Q P && Q

X->isEmpty() no X

X->exists(a|P) some a:X | P

X->forAll(a|P) all a:X| P

X.size() #X

Currently, the translation is performed systematically, but manually. Never-
theless, the process was designed to be decidable, allowing automatization. Both
languages can be defined by meta-modeling, and transformations can be imple-
mented as a correspondence between meta-model elements, using an approach
similar to OMG’s Model-Driven Architecture [12]. XML-based representations,
such as XMI [13], can certainly help obtaining Alloy paragraphs from UML
classes and OCL invariants. Furthermore, OCL constraints can be translated
into Alloy formulae as source-to-source transformations, involving a parser for
OCL and manipulation of abstract syntax trees. Having an automatic translator
from UML to Alloy, constraint solving from the Alloy Analyzer can be provided
for a subset of UML class diagrams, as explained in the next section. As the
last step of the process, the results yielded by the Analyzer must be transformed
back to UML. They could be appropriately represented by object diagrams [1],
by integrating instances yielded by the Alloy analyzer with UML CASE tools,
such as Rational Rose [14].

4 Class Diagram Analysis

In this section, we present how our approach could be used by developers to
improve modeling, adding reliability to the development of critical systems. First,
we present, through our banking example, some of the benefits of constraint

107

9

solving for UML class diagrams. Next, we describe a number of case studies
using Alloy and its tool support on modeling of critical systems, which could
apply to UML/OCL by our approach.

4.1 Example

Considering the class diagram depicted in Figure 2, a number of unspecified
properties could be uncovered by constraint solving in a straightforward way. For
instance, if we translate this diagram into an Alloy model with same meaning, by
the mapping rules given in Section 3, the simulation of the resulting model may
yield the snapshot depicted in Figure 3 (represented as a UML object diagram).

Fig. 3. First Generated Snapshot.

This simulation uses a scope of at most two objects for each entity. The
generated snapshot shows that customers and their personal accounts are not
related within one bank. Assuming that this is a functional requirement, the
model should be modified in order to accommodate the required relationship.
The modeler could, for instance, add a directed binary association between these
two classes (as depicted in Figure 4), with no multiplicity constraints, then ex-
ecuting a new simulation. A possibly generated snapshot for the new model is
showed in Figure 5.

Fig. 4. Modification to the Banking Class Diagram.

108

10

Fig. 5. Second Generated Snapshot.

Although customers and accounts are related, the model allows a snapshot
where a customer and its (savings) account are within distinct banks. Assuming
that it is a undesirable situation, the modeler can then include the following
OCL invariant to the Bank context:

context Bank inv customersAccountsInBank:

self.custs.owned_accs->includes(self.accs)

which, according to the mapping rules, translates to Alloy:

all self:Bank | self.accs in self.custs.owned_accs

The translated model possibly yields the snapshot depicted in Figure 6. A
number of similar executions, with gradually greater scopes, can increase confi-
dence on the modeled properties.

Fig. 6. Third Generated Snapshot.

Additionally, our approach can help identification of over-constrained class
diagrams, usually leading to inconsistent models that are not implementable. In
the resulting class diagram from the previous example, a functional requirement
could be added to the system, allowing customers temporarily without a bank
card to be registered into any bank. If we add the following OCL constraint to
the Customer context:

109

11

context Customer inv customersNoBankCard:

Customer.allInstances->exists(c | c.card->isEmpty())

No snapshots are found by the Analyzer for the translated Alloy model, even
if we increase the scope. This result is due to the newly-added constraint, which
contradicts with the multiplicity constraints between Customer and BankCard
objects, stating the existence of an one-to-one correspondence. One of the two
constraints must be removed in order to include the desired property to the
model.

Finally, one may want to investigate the relationship between BankCard and
Account objects. For a tool implementing our approach, users should be able to
enter OCL formulae by means of a dialog box, which may be similar to the USE
tool [7]. These formulae would be translated to Alloy assertions, then passed on
to the Alloy Analyzer as input. In our example, the following OCL formula could
be checked against the diagram:

context Customer inv cardsAndAccountsAssertion:

self.card->notEmpty() implies self.owned_accs->notEmpty()

This assertion tests whether every customer that has a card owns at least
one account, which could be a new functional requirement. The analysis yields
a counterexample, depicted in Figure 7. The snapshot denotes a state with one
customer owning a card and no accounts, refuting the assertion. Further changes
can fix this requirement, possibly a new constraint relating accounts and cus-
tomers’ bank cards.

Fig. 7. Generated Counterexample.

Besides showing how our approach can be useful for finding problems in class
diagrams, this example shows an additional benefit of this automatic analysis:
incremental modeling. A diagram can be written, along with some constraints.
Simulation can then give feedback to the modeler regarding the current status of
the constraints, indicating the next changes that will accommodate the desired
functional requirements. In the same way, assertions offer greater confidence that
the model follows those requirements adequately.

110

12

4.2 Applications of Alloy and Constraint Solving to Critical
Systems

The banking example was used as a simple illustration of our ideas. However,
Alloy has been used as a useful approach for finding problems in safety-critical
systems. These examples are applicable in the context of this paper, due to the
semantics proposed for class diagrams and OCL constraints.

In a recent case study, Alloy was used for specifying a system controlling a
radiation therapy machine [6]. This machine produces beams of photons for treat-
ing a number of diseases. The system was previously modeled in UML/OCL, and
its translation to Alloy uncovered a number of errors. Automatic analysis helped
verify whether machine operations were commutative (the order of execution do
not affect the final result). It was observed that several pairs of operations did
not commute, revealing potential problems during system activity.

Related examples of applying Alloy to critical systems include modeling of
access control for information systems [15] and a railway system [9]. In the latter,
an Alloy model was built for checking the policy for controlling the motion of
trains of the Bay Area Rapid Transit (BART). The analysis was performed in
order to check the existence of any condition (state configuration) which could
cause train collision.

In addition, an air-traffic control system build by NASA has been modeled
using Alloy, which explored new ideas for the design and analysis of such sys-
tems [5]. These applications show the potential use of constraint solving and
Alloy for understanding critical systems, which can lead to the early discovery
of bugs in modeling.

5 Related Work

Our approach allows generation of snapshots and counterexamples to claims
over UML class diagrams and OCL invariants, by means of the Alloy Analyzer
tool [4]. Related tool support have been developed for similar purposes [16, 17],
although allowing syntax and type checking for OCL formulae. In particular, the
USE tool [7] also makes OCL machine-analyzable. It contains a useful and easy-
to-use model animator, which can uncover bugs by checking snapshots against
UML class diagrams constrained with OCL. Our approach differs from USE
in the sense that in the latter modelers must provide the verified test cases.
Using our approach, snapshots can be automatically generated within a given
scope, becoming amenable to automatic simulation. Besides, this analysis allows
assertion checking by searching a snapshot that refutes the asserted property
(which could be provided as an OCL formula by the user).

Regarding the semantics we provided for UML/OCL, Bordeau and Cheng [18]
define a similar approach for a related modeling notation. They automatically
map models to algebraic specifications, allowing formal reasoning on the se-
mantics of the translated specification. In contrast, Alloy admits a more direct
mapping from UML, since both are similarly suitable to object modeling, as

111

13

reported by another work [6]. Also, automatic simulation and analysis in Alloy
may be more appealing to software architects and designers. In other related
approach [19], a systematic approach for translating UML class diagrams with
OCL constraints is provided. The translation rules are similar to ours, although
they use an additional intermediate language for the translation.

There have also been a number of efforts on proposing formal semantics
for UML and related modeling languages, in order to clarify the meaning of
its diagrammatic constructs, supporting tool development. For example, related
approaches [20, 21] give a formal semantics to a subset of UML class diagrams.
We defined a semantics for UML class diagrams and OCL invariants with the
specific purpose of leveraging Alloy’s automatic analysis to UML.

6 Conclusion

In this paper, we have proposed an approach for automatic analysis of UML class
diagrams, according to a semantics based on Alloy, employing the capabilities
offered by its analysis tool. This approach provides an option for automation
regarding UML/OCL, which can be useful for early identification of problems
in critical systems’ models, including under- and over-constrained models and
undesired properties, which may compromise correctness.

The analysis provided by the Alloy Analyzer is sound but not complete. Since
it is based on a user-provided scope, if no snapshot is found, nothing can be
inferred (same with counterexamples for assertions). However, small scopes may
suffice for improving confidence in modeling and finding relevant problems [22].
Furthermore, the analyzer can generate all possible snapshots for a model within
the scope, not requiring any user input. Therefore, many more states can be
covered than any testing activity. In this context, Alloy was used as a test case
generator for Java programs [23]. We believe that our approach can leverage the
benefits of this analysis to UML class diagrams, improving modeling of critical
systems using UML. Although the support for numeric types is limited in Alloy,
in order to make bounded analysis feasible, a wide range of complex structural
properties can still be modeled and analyzed. Such analysis may not even be
possible in class diagrams using all features from UML and OCL specifications.

It may be argued that constraint solving might be applied to UML directly,
without the need of Alloy as an intermediate language. For example, this can be
done through an analysis tool that maps UML class diagrams to a SAT solver,
allowing simulation and analysis. However, due to their complex and unresolved
semantics, we would still need to map UML and OCL to a formal language, whose
boolean formulae are given as input to a SAT solver. For effective analysis, this
language should also be sufficiently simple to allow scope-limited analysis over
classes and associations. In this context, Alloy is a reasonable choice, since it was
developed for constraint solving. Furthermore, we have on-going work on defining
an equivalence notion for object models in Alloy, which support the specification
of semantics-preserving transformations and refactorings for models [24]. These
results can be directly leveraged to UML by our translation to Alloy.

112

14

Alloy provides a simple semantics to UML class diagrams and OCL invari-
ants. However, Alloy cannot represent implementation-oriented UML constructs.
For instance, attributes are mapped to simple binary relations, disregarding
properties such as visibility and default value. Nevertheless, the chosen subset is
representative to a number of problems that can be abstractly modelled. Simi-
larly, our approach regards only a subset of UML at first, since Alloy was designed
to primarily model structural properties. However, recent work [6, 9] shows use
of Alloy for modeling behavioral properties. The extension of our semantics on
that topic is considered as future work.

The automation of our approach is an on-going work. The mapping rules
between UML/OCL and Alloy can be implemented using well-founded transfor-
mation techniques. Analysis is performed on the resulting Alloy model, and the
results can be presented as UML object diagrams. This tool support may be
integrated to leading UML tools, such as Rational Rose [14], aiming at straight-
forward application to UML class diagrams with OCL annotations.

7 Acknowledgements

This work benefitted from comments by members of the Software Productiv-
ity Group. Also, we give special thanks to Augusto Sampaio, Rodrigo Ramos
and Franklin Ramalho for their valuable comments. In addition, we would like
to thank all the anonymous referees, whose appropriate suggestions helped im-
proving the paper. This work was partially funded by CAPES and CNPQ, grant
521994/96-9.

References

1. Booch, G., et al.: The Unified Modeling Language User Guide. Object Technology.
Addison-Wesley (1999)

2. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Second edn. Addison-Wesley (2003)

3. Jackson, D.: Alloy: A Lightweight Object Modelling Notation. ACM Transactions
on Software Engineering and Methodology (TOSEM) 11 (2002) 256–290

4. Jackson, D., Schechter, I., Shlyahter, H.: Alcoa: the Alloy Constraint Analyzer. In:
Proceedings of the 22nd International Conference on Software Engineering, ACM
Press (2000) 730–733

5. Dennis, G.: TSAFE: Building a Trusted Computing Base for Air Traffic Control
Software. Master’s thesis, MIT (2003)

6. Dennis, G., Seater, R., Rayside, D., Jackson, D.: Automating Commutativity Anal-
ysis at the Design Level. In: Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis. (2004) 165–174

7. Richters, M., Gogolla, M.: Validating UML Models and OCL Constraints. In
Evans, A., Kent, S., Selic, B., eds.: UML 2000 - The Unified Modeling Language.
Advancing the Standard. Third International Conference, York, UK, October 2000,
Proceedings. Volume 1939 of LNCS., Springer (2000) 265–277

8. Jackson, D.: Alloy 3.0 Reference Manual. Available at http://alloy.mit.edu/beta/-
reference-manual.pdf (2004)

113

15

9. Jackson, D.: Railway Safety. Available at http://alloy.mit.edu/contributions/-
railway.pdf (2002)

10. Object Management Group: OMG Unified Modeling Language Specification Ver-
sion 1.5 (2003)

11. Gogolla, M., Radfelder, O., Richters, M.: A UML semantics FAQ - the view from
bremen. In Kent, S.J.H., Evans, A., Rumpe, B., eds.: Proc. ECOOP’99 Workshop
UML Semantics FAQ, University of Brighton (1999)

12. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: the Practice and Promise of
The Model Driven Architecture. Addison-Wesley (2003)

13. OMG: XML Metadata Interchange (XMI) Specification (2001) OMG Document
formal/02-01-01.

14. Rational Software: Rational Rose XDE Developer (2004) http://www-
306.ibm.com/software/awdtools/developer/rosexde/.

15. Zao, J., Wee, H., Chu, J., Jackson, D.: RBAC Schema Verification Using
Lightweight Formal Model and Constraint Analysis. Submitted to SACMAT 2003
(2002)

16. Tigris.org: ArgoUML (2004) http://argouml.tigris.org/.
17. Klasse Objecten: Octopus: OCL Tool for Precise Uml Specifications (2004) http://-

www.klasse.nl/ocl/octopus-intro.html.
18. Robert H. Bourdeau and Betty H. C. Cheng: A Formal Semantics for Object

Model Diagrams. IEEE Transactions on Software Engineering 21 (1995) 799–821
19. Lano, K., Clark, D., Androutsopoulos, K.: UML to B: Formal verification of object-

oriented models. In Boiten, E.A., Derrick, J., Smith, G., eds.: Proceedings, Inter-
national Conference on Integrated Formal Methods, Canterbury, UK. Volume 2999
of LNCS., Springer (2004) 187–206

20. Clark, T., Evans, A., Kent, S.: The Metamodelling Language Calculus: Foundation
Semantics for UML. In Hussmann, H., ed.: Fundamental Approaches to Software
Engineering, 4th International Conference, FASE 2001, held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2001, Genova,
Italy, April 2-6, 2001. Volume 2029 of LNCS., Springer (2001) 17–31

21. Evans, A., France, R.B., Lano, K., Rumpe, B.: The UML As a Formal Modeling
Notation. In Bézivin, J., Muller, P.A., eds.: The Unified Modeling Language,
UML’98 - Beyond the Notation. First International Workshop, Mulhouse, France,
June 1998. Volume 1618 of LNCS., Springer (1999) 336–348

22. Khurshid, S., Marinov, D., Jackson, D.: An Analyzable Annotation Language. In:
Proceedings of the 17th ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, ACM Press (2002) 231–245

23. Marinov, D., Khurshid, S.: TestEra: A Novel Framework for Automated Testing
of Java Programs. In: Proceedings of the 16th IEEE International Conference on
Automated Software Engineering, IEEE Computer Society (2001) 22

24. Gheyi, R., Borba, P.: Refactoring Alloy Specifications. In Cavalcanti, A., Machado,
P., eds.: Electronic Notes in Theoretical Computer Science, Proceedings of the
Brazilian Workshop on Formal Methods. Volume 95., Elsevier (2004) 227–243

114

Rigorous development of reusable, domain-specific
components, for complex applications*

I. Johnson1, C. Snook2, A Edmunds2 & M. Butler2

1AT Engine Controls Ltd., Portsmouth, UK.
2 University of Southampton, Southampton, UK.

Abstract. The reuse of reliable, domain-specific software components is a
strategy commonly used in the avionics industry to develop safety critical
airborne systems. One method of achieving reuse is to use domain specific
languages that map closely onto abstractions in the problem domain. While this
works well for control algorithms, it is less successful for some complex
ancillary functions such as failure management. The characteristics of device
failures are often difficult to predict resulting in late requirements changes.
Hence a small semantic gap is especially desirable but difficult to achieve.
Object-oriented design techniques include mechanisms, such as inheritance,
that cater well for variations in behaviour. However, object-oriented notations
such as the UML lack the precision, and rigor, needed for safety critical
software. UML-B is a profile of the UML for formal modelling. In this paper
we show how UML-B can be used to model failure management systems via
progressive refinement, and indicate how this approach could utilise UML
concepts to cope with high variability, while providing rigorous verification.

1 Introduction

Developers in the avionics industry are interested in the use of object-orientated
technology (OOT) [1, 2] as a way to increase productivity. In particular, concepts,
such as inheritance and design patterns, enable more flexible reuse of software. The
emergence of the UML [3] as the de-facto standard modelling language for object-
oriented design and analysis, and the subsequent development of supporting tools, has
promoted the modelling and design of applications in the UML. Due to concerns over
safety certification issues, OOT has not seen widespread use in avionics applications.
One reason for this is that the controlling standards used in the industry, such as
RTCA DO-178B [6] and its European equivalent, EUROCAE ED-12B [7], do not
consider OOT. In order to address this, a new version of the standard, DO-178C/ED
12C, is planned. A significant contribution to this new standard will come from the
findings of the Object Orientated Technology in Aviation (OOTiA) initiative [8],
which was set up by the FAA and NASA to develop guidelines for the safe use of
object-oriented technology in avionics software development.

* This research is being carried out as part of the EU funded research project: IST 511599

RODIN (Rigorous Open Development Environment for Complex Systems).

115

Application development based on a combination of UML and formal methods will
improve safety and provide flexibility in the design of software for aviation
certification. The combination of UML and formal methods at an abstract modelling
stage will enable the reuse of reliable software components both at the specification
and code levels. We indicate how we can exploit the reuse features of the UML and
the reliability provided by formal methods. The development process will benefit
from a reduction in the semantic gap by defining a vocabulary of entities that maps
closely onto abstractions in the problem domain. UML class diagrams assist greatly
with this, especially in complex application domains where the use of features such as
inheritance caters for variation of subtypes. The use of formal methods to address the
rigorous verification required for safety critical applications has been advocated
before [5] but adoption within industry has been limited partly due to the need for
industrial strength tool support. One formal method that has been developed for
practical use in industry and enjoys good tool support is the B method [9].

1.1 B and B tools

The B method is based on a set theoretic approach and provides the ability to perform
rigorous proof, thus ensuring a self-consistent specification. The B method’s Abstract
Machine Notation (AMN) is used to describe the state and behaviour. Under-
specification in assignments or choices is possible via non-deterministic constructs,
which must be resolved in later refinements prior to implementation. An invariant
clause describes properties of the system that must hold at all times. The B
verification tools [11] generate proof obligations (POs) and then attempt to
automatically discharge (prove) them. Invariably there are a number of PO’s that
remain to be discharged semi-automatically using the interactive prover [10]. The
user guides the proof by suggesting strategies and sub-goals. Discharging POs with
the interactive prover often leads to a greater insight into the specification and
inaccuracies can be identified and addressed at an early stage of development.
Discharging proof obligations can be difficult and time consuming, but once complete
the specification is known to be self-consistent. A model checker, ProB [13], that
searches for deadlocks and invariant violations may be used as a preliminary
verification of the specification before commencing proof. Refinements are related to
the previous level of abstraction in such a way that a valid refinement always satisfies
the abstract specification. Proof provides confidence that the refinement is not only
self-consistent but also reflects the behaviour of the abstract specification it refines.
Event B [12] is a derivation of the original B Method that uses the notion of predicate
guards that enable or disable events. The event driven approach of Event B begins
with the abstraction of the observable events that ‘may’ occur in a system. The
abstraction is refined in a number of steps, adding new events and state information at
each iteration. The aim is to move towards a consistent model, with enough detail to
fully describe the behaviour of the system. There are a number of additional
requirements for the event driven approach, firstly, the added events of a refinement
are not allowed to permanently take control of the system so that the events of the
more abstract model are eventually enabled; secondly, a concrete event must not be
enabled more often than its abstract counterpart; but the abstract event must not be

116

enabled more than the disjunction of the concrete event together with the new events.
That is, the abstract event is replaced by a sequence of new events culminating in the
refined event.
Validation of specifications is just as important as verification. ProB [13] can also be
used to animate B machines. The list of currently enabled operations is displayed in a
pane. The current state of variables is displayed in another pane. The user may choose
sequences of enabled operations in order to explore the behaviour of the specification.

2 Failure management

A common functionality required of many systems is to manage failure of its inputs.
This is particularly pertinent in aviation applications where lack of tolerance to failed
system inputs could lead to loss of aircraft. The role of failure management in an
embedded control system is shown in Fig.1.

FAILURE

MAN
CONTROL

O
U
T
P
U
T

I
N
P
U
T

Fig. 1. Context diagram for failure management subsystem

The inputs are tested and, if good, are passed unaltered to the control subsystem;
otherwise the failure of the input is managed. This may involve substituting values,
and taking alternative actions. There are two aspects to the subsystem; detection and
remedial action. Failure detection involves checking for input validity, including out
of range checks, rate of change checks, and comparison with other conditions in the
system. A failed condition must persist for a period of time before a failure is
confirmed. If the invalid condition is not confirmed the input recovers and is used
again. When setting the persistence conditions for confirmation of a failure, a balance
must be sought between achieving a fast response to failures and over sensitivity to
spurious interference. Once a failure is confirmed it is latched until power is reset.
Remedial actions vary, depending on the input’s function and importance within the
system, and the state of the system when the failure occurred. Temporary remedial
actions, such as relying on the last good value, or suppressing control behaviour, may
be taken while a failure is being confirmed. Once a failure is confirmed, more
permanent actions are taken such as switching to an alternative source, altering or
degrading the method of control, engaging a backup system or freezing the controlled
equipment. Tables 1 and 2, show some typical failure management activities.

117

Table 1. Detection

Signal High Low Rate Conditions for test
120% 0% 100%/sec Engine Stood
120% 10% 100%/sec Engine Starting ESa
120% 50% 100%/sec Engine Running
120% 0% 100%/sec Engine Stood
120% 10% 100%/sec Engine Starting ESb
120% 50% 100%/sec Engine Running

ESa - ESb 5% -5% - ESa or ESb >30%
ESa – Engine speed (main input)
ESb – Engine speed (alternative input)

Table 2. Remedial Actions

Signal Procedure code
Select ESb if available ESa
else Switch to backup system

ES1

ESb ESb not available ES2
ESa/ESb diff Use highest value sensor ES3

Experience has shown that failure management systems can be difficult, and
expensive, to develop and maintain due to their complexity and vulnerability to
change. Changes often occur late in the development cycle, since requirements are
redefined based on empirical performance under failure conditions. The semantic gap
between control algorithm design notations and coding constructs has been addressed
successfully by the development of domain specific languages. Unlike control
algorithms failure management has no successful domain specific language. The
nature of failure management is that different control actions and behaviour are
required, dependent on the outcome of conditional logic for each of many inputs; this
can result in complex overall behaviour. Failure management can become
functionally complex due to the following: the rate of decay of an input depends on
sensor device characteristics, the application of a test depends on engine and input
conditions, a test may depend on the sampling rates of inputs, a test may vary
according to outcomes of other tests, the detection of a failure may require hysteresis
to avoid oscillation, the sequence of tests may depend on temporal interdependence of
input sampling, remedial actions depend on the system state.
One approach, to improve flexibility, is to model a failure management subsystem
using the UML; this will improve configurability and, if combined with formal
methods to ensure consistency, will be particularly suited to the safety critical
applications found in aviation. Modelling functional behaviour will provide the
ontology to convey functional understanding and, through formal techniques, provide
a way to map this to the code, reducing the semantic gap.

118

3 Overview of the UML-B profile and U2B translator

The UML-B [17] is a profile of UML that defines a formal modelling notation. It has
a mapping to, and is therefore suitable for translation into, the B language. UML-B
consists of class diagrams with attached statecharts, and an integrated constraint and
action language based on the B AMN notation. The UML-B profile uses stereotypes
to specialise the meaning of UML entities to enhance correspondence with B
concepts. The profile also defines tagged values (UML-B clauses) that may be
attached to UML entities to provide formal modelling details that have no counterpart
in UML. Several styles of modelling are available within UML-B. Here we use its
event systems mode, which corresponds with the Event B modelling paradigm. In
event systems mode, UML operations represent spontaneous events. Since events are
parameterless, operation parameters represent non-deterministic selection of local
variables. UML-B provides a diagrammatic, formal modelling notation based on
UML. It has a well defined semantics, as a direct result of its mapping to B. There are
barriers to the acceptance of formal methods in industry. The popularity of the UML
enables UML-B to overcome some of these barriers. Its familiar diagrammatic
notations make specifications accessible to domain experts who may not be familiar
with formal notations. UML-B hides B’s infrastructure, it packages mathematical
constraints and action specifications into small sections, each being set in the context
of its owning UML entity. The U2B [18] translator converts UML-B models into B
components (abstract machines and their refinements). Translation from UML-B into
B enables verification and validation tools to be utilised.
In many respects B components resemble an encapsulation and modularisation
mechanism suitable for representing classes. A component encapsulates variables that
may only be modified by the operations of the component. However, to ensure
compositionality of proof, B imposes restrictions on the way variables can be
modified by other components (even via local operations). Translating classes into B
components imposes corresponding restrictions on the relationships between classes.
Therefore we translate a complete UML package (i.e. many classes and their
relationships) into a single B component. This option allows unconstrained (non-
hierarchical) class relationship structures to be modelled. Since the B language is not
object-oriented, class instances must be modelled explicitly. Attributes and
associations are translated into variables whose type is a function from the class
instances to the attribute type or associated class. For example a class A with attribute
x of type X would generate the following B:

SETS A
VARIABLES x
INVARIANT x : A --> (X)

Operation behaviour may be represented textually in a notation based on B, as a state
chart attached to the class, or as a simultaneous combination of both. Further details
of UML-B are given in [17]. Examples of previous case studies using UML-B and
U2B are given in [14,15,16 and 19].

119

4 UML-B model of failure management

As an example of using UML-B to develop failure management systems we show a
simplified model and its verification. Our first abstract model captures the overall
states of the system. in subsequent refinements we model the stages in confirming a
failure, the mechanism for freezing the system and the relationship between
individual inputs and the collective state of the system. In these early stages we leave
many aspects of the system under specified, saying only, for example, that an input
may be detected as an unconfirmed failure and then may either recover or become a
confirmed failure; but saying nothing about how or why these choices are made.
Despite this (non-deterministic) under-specification the model embodies important
properties about the interaction of the states of inputs that we verify by proof. In
practice, inputs have differing levels of sensitiveness and importance to the control
system operation. However, to simplify the example we only consider inputs to which
the controller is sensitive (i.e. freezes while a failure is unconfirmed) and can not
continue to control without (i.e. hard fault).

4.1 Machine fman_a

This first abstract model of failure management considers the overall state of the
system. It defines the three main states of the controller in response to input validity
conditions, which are; a) normal operation, b) frozen while attempting to confirm a
possible input error, and c) hardfaulted when an input error has been confirmed. Note
that once the system has hard faulted no further events may occur (the model is
intentionally deadlocked). The following state diagram is attached to a class utility
(within the fman_a <<machine>> package) and hence represents a simple variable.

normal hardfaultedfrozen
freeze

unfreeze

hardfault

Fig. 2. Statechart diagram of the abstract machine

Since this level is a simple expression of the permitted transitions between the three
states of the system, the only verification is that there are no other states. The B
produced by U2B for this model is shown in the appendix.

4.2 Refinement fman_r1

In this refinement we recognise that the system state is actually an abstraction of the
states of many instances of input failure management (Fig.4). Each input has three
possible states; ok, suspect, and confirmed. Each input can have a good event
(corresponding to a valid input value being detected) or a bad event (when an invalid

120

value is detected). Some of these good and bad events (depending on the state of the
full collection of inputs) refine the freeze, unfreeze and hardfault events from
the abstract model. These are first_bad (the first input to enter the suspect state),
last_good and confirm respectively. When an input has confirmed detection of an
invalid value, a guard on each transition prevents further events from being enabled.
This models the intentional deadlock in the abstract model. The refinement relation
(Fig. 6.) specified in a REFINEMENT_RELATION clause attached to the package,
fman_r1, gives the correspondence between the equivalent states of the two models.
The system is normal when no inputs have detected invalid values (confirmed or
suspect), frozen when at least one input has detected an invalid value but no
inputs have been confirmed invalid, and hardfaulted when an input has detected
and confirmed an invalid value. Note that we use a ‘Petri’ style interpretation of the
state model (where each state is a variable whose value is the set of instances in that
state) since this makes it easier to specify the collective state of the class in transition
guards. Verification proves that the collective state of the inputs behaves in
accordance with the overall system states; normal, frozen and hardfaulted. The
B produced by U2B for this model is shown in the appendix.

INPUT

first_bad()
last_good()
bad()
good()
confirm()

Fig. 3. Class diagram of the first refinement

ok suspect confirmed

all transitions have the additional
guard, confirmed = {}

confirm

good[suspect/={self}]

last_good[suspect={self}]

bad[suspect/={}]

first_bad[suspect={}]

Fig. 4. Statechart diagram of the INPUT class

REFINEMENT_RELATION
((control_state=normal) <=> (ok=INPUT)) &
((control_state=frozen) <=> (suspect/={} & confirmed={})) &
((control_state=hardfaulted) <=> (confirmed/={}))

Fig. 5. Refinement relation between abstraction and first refinement.

121

Table 3. - Event refinement in first refinment

event in refinement r1 refines event in abstraction a

first_bad freeze
Bad (new event)
first_good unfreeze
Good (new event)
Confirm hardfault

4.3 Refinement fman_r2

In this refinement we introduce the idea that each input consists of several tests and
each test is in a passed, failed or latched state. This is modelled as a class TEST which
has a state model, and an association to its owning input. INPUT no longer has any
events or a state model. Its state is derived from its associated collection of TESTs.
The state of an input is ok when all its tests are passed, confirmed when one of its
tests is latched and suspect otherwise.

INPUT

TEST

detect_first()
detect_first_thisInput()
detect()
recover()
recover_last_thisInput()
recover_last()
latch()

11.. *

+input

1

+test s

1.. *

<<constant>>

Fig. 6. Class diagram of the second refinement

passed latchedconfirming

detect

detect_first

detect_first_thisInput

latch

recover_last

recover_last_thisInput

recover

Fig. 7. state diagram of the TEST class

122

The guards for the transitions (events) are given in Fig 9. (Where a|>s restricts the
association a to links whose targets belong to the set s. E.g. (tests |>
confirming)[{i}] is the set of instances of TEST that are associated with the input,
i, that are in the state confirming).

detect_first: latched={} & confirming={}
detect_first_thisInput: latched={} & confirming/={} &
 (tests|>confirming)[{input}]={}
detect: latched={} &

 (tests|>confirming)[{input}]/={}
recover_last: latched={} & confirming={self}
recover_last_thisInput: latched={} & confirming/={self} &

 (tests|>confirming)[{input}]={self}
recover: latched={} &

 (tests|>confirming)[{input}]/={self}
latch: latched={}

Fig. 8. Guards on events in second refinement

The refinement relation defines the set of inputs in each of the r1 level states based on
the state of its collection of tests. (where s<<|a restricts the association a to links
whose source do not belong to the set s).

REFINES fman_r1
REFINEMENT_RELATION
 ok = ran(confirming\/latched<<| input) &
 suspect = ran(confirming-latched <| input) &
 confirmed = ran(latched <| input)

Fig. 9. Refinement relation between first and second refinement.

The events of the class INPUT are re-specified as events of the class TEST and in
terms of the conditions of the collection of tests belonging to the input. Two new
events, detect and recover, are added to model the transitions of subsequent tests
detecting failures when another test on the same input has already done so. These new
events had no effect in the previous level of refinement.

Table 4. Event refinement in second refinement

event in refinement r2 event in refinement r1 event in abstraction
a

detect_first first_bad freeze
detect_first_thisInput bad -
detect - -
recover_last last_good unfreeze
recover_last_thisInput good -
recover - -
latch confirm hardfault

123

4.4 Adding further details to Test

In subsequent refinements we introduce further detail to the model in many stages that
we summarise here. This includes events and a counter attribute for confirming (or
recovery of) a test. We add a parameter, pval, and a corresponding limit for
deciding when detect, recover and latch events occur for a particular test.
Having verified the previous refinement stages we no longer need to distinguish
separate events for the differing conditions when a test detects an invalid input. We
therefore merge detect, detect_first and detect_first_thisInput using a
three branch guarded choice (SELECT substitution). Subsequently we also merge in
the confirmation counting events and latching event with further guarded branches of
the same event. In this way the correspondence of actions taken under different
conditions is verified to represent the abstract event model before being merged into a
conditional single event, as the model is refined towards an implementation. The B
produced by U2B for the merged operation, test, is shown in the appendix.

ok counting latched

test[pval<=limit] test[pval>limit & count<climit] / count:=count+inc

test[pval<=limit & count>dec] / count:=count-dec

test [pval>lim it & count >=cl imi t]

test[pval<=limit & count<=dec] / count:=0

tes t[pval>lim it] / count=inc

Fig. 10. Statechart diagram of refinement with counting and merged events

4.5 Defining subtypes of Test

Having rigorously developed a generic test class this can be specialised in further
refinements to perform several sub-types of test, such as magnitude tests, rate of
change tests and difference comparison tests. There are now three subclasses of TEST.
TEST is an abstract class having no instances other than those that belong to one of its
subclasses. The inheritance is modelled in the B produced by U2B as disjoint subsets
of TEST. MAG represents a magnitude test that reuses the behaviour of its superclass.
DIFF is a test that compares the associated input with another input (represented by
association, comp). It overrides the test event by ‘calling’ the superclass’ test
passing it the difference in the values of the 2 inputs. To achieve this we add a value
attribute to the class INPUT with an update event to change its value. RATE is a rate
of change test that compares the current value of its associated input with the last
value it tested. It has an additional attribute to record the last value and overrides the
test operation as shown.

124

TEST
count
<<constant>> inc : NATURAL
<<constant>> dec : NATURAL
<<constant>> climit : NATURAL
<<constant>> limit : NATURAL

test(pval : NATURAL)

INPUT
value : NATURAL = 0

update(inv : NATURAL)

11.. *

+input

1

+t est s

1.. * <<constant>>

DIFF

test()

+comp
11

MA G

test()

RATE
last : NATURAL = 0

test()

Fig. 11. Class diagram for refinement with subclasses of test

The overriding of the test event is shown below. This is modelled in the
corresponding B by collating the three specialised test events into a single event with
three guarded branches. The guard for each branch tests the instance for membership
of a subclass.

MAG:test = super.test(input.value)
DIFF:test = super.test(abs(input.value-comp.value))
RATE:test = last:=input.value ||
 super.test(abs(input.value-last))

 where abs(i,j)= max(i-j,j-i)

Fig. 12. Overriding of the event, test

5 Discussion

To verify an event refinement it is required to show that any new events lead
(eventually) to the enabling of one of the original events. When we attempted to
verify our first refinement we found that this wasn’t possible. Our initial attempt at a
model as presented above doesn’t ensure that if the system enters the freeze state it
will ever be able to leave it, (a requirement imposed by Event B). The problem is that,
although an individual input must leave the unconfirmed state after entering it,
another input might also enter the unconfirmed state before the original one leaves it.
In this way, inputs could take it in turns to be unconfirmed leaving the system
permanently frozen. This would be an undesirable outcome since the frozen state is
intended to be a temporary stage before confirming or recovering. A limiting
mechanism that forced the system into the hardfaulted state after a certain number of
unconfirmed inputs would prevent this and enable us to prove the event refinement.
Even with this grossly oversimplified example the event modelling approach
increased our understanding of the problem at the earliest stages of development.

125

6 Future work

This paper describes our first attempt using an event based modelling approach, with
UML-B, to improve the reusability and portability of failure management systems.
We are in the preliminary stages of a three-year research programme that aims to
investigate this area. Within the project we will develop UML-B, to better support the
use of UML features such as inheritance, and to provide modelling mechanisms that
aid the refinement and transformation of UML-B models. We plan to re-implement
the U2B translator within eclipse in order to achieve better integration with the B
validation and verification tools, which will also be ported to eclipse. We will test and
develop the ideas presented in this paper, on a larger scale example, in the following
stages. Model a small but realistic, imaginary failure management application. The
model may consist of several levels of refinement but be platform independent. We
will then validate and verify the model via translation to B. Following validation and
verification; we will investigate methods for abstracting away from the specific
example to obtain a generic UML-B model that is application independent. New ideas
for the development, using B# [20], may be used in this stage. Further development of
UML-B and U2B may be needed to support this kind of model. Finally, we will
investigate mechanisms for model transformation to obtain application and domain
specific models from the generic model.

7 Conclusions

In this paper we have illustrated an approach to rigorous development of critical
complex systems, such as failure management, in a manner that results in a high
degree of re-usable verified components. The approach provides rigorous consistency
verification through a sequence of refinement steps starting from a very abstract
expression of overall system behaviour. This process of refinement can be continued
through requirements development, design and into implementation. The process
involves a, UML based, formal modelling notation, UML-B and utilises the tools
available for the formal notation B. The refinement process inherently provides a high
degree of reuse of verified specifications due to the deferment of specific application
details. The genericity features of the UML may be used to provide re-usable
common components within each refinement level. In this way we hope to provide a
library of component classes that have a flexible but simple mapping with application
domain concepts. The hierarchy of class models can then be instantiated with an
object model for different applications thus achieving a specification and
implementation language with small semantic gap that is suitable for the target
complex problem domain; in this case, failure management systems. This approach
could similarly be used for other complex systems problems.

126

References

1. Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall PTR, Upper Saddle
River, NJ 1997.

2. Grady Booch, Object Oriented Analysis and Design with Applications , The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA 1994.

3. Object Management Group, OMG Unified Modeling Language Specification, version 1.3,
June 1999, from http://www.omg.org/technology/documents/modeling_spec_catalog.htm.

4. Jishnu Mukerji, Joaquin Miller, MDA guide version 1.0, available from Object
Management Group website http://www.omg.org.

5. Ministry of Defence (1997) Def Stan 00-55: Requirements for safety related software in
defence equipment, Issue 2. http://www.dstan.mod.uk/data/00/055/02000200.pdf

6. Radio Technical Commission for Aeronautics, RTCA DO 178B -Software considerations in
Airborne Systems and Equipment Certification, from http://www.rtca.org.

7. Eurocae ED12B, Software considerations in Airborne Systems and Equipment
Certification, from http://www.eurocae.org.

8. FAA/NASA, OOTiA - Object Orientated Technology in Aviation Program, from
http://shemesh.larc.nasa.gov/foot/.

9. J-R Abrial, The B-Method, Cambridge University Press, 1996.
10. J-R Abrial_ and D Cansell, Click’n Prove: Interactive Proofs Within Set Theory, from

http://www.loria.fr/~cansell/cnp.html.
11. B4free is a set of tools for the development of B models from http://www.b4free.com.
12. J-R Abrial, Event Driven Construction, 1999, from

http://www.atelierb.com/documents.htm
13. M.Butler, and M. Leuschel, ProB: A Model-Checker for B, Proceedings of FME 2003:

Formal Methods - LNCS 2805, from http://www.ecs.soton.ac.uk/~mal/systems/prob.html
14. C. Snook, K. Sandstrom, Using UML-B and U2B for formal refinement of digital

components, Proceedings of Forum on specification & design languages, Frankfurt, 2003.
15. C. Snook and M. Butler, Using a Graphical Design Tool for Formal Specification,

Proceedings of the 13th Annual Workshop of the Psychology of Programming Interest
Group (PPIG).

 16.M. Butler, C. Snook, Verifying Dynamic Properties of UML Models by Translation to the B
Language and Toolkit, Proceedings of UML 2000 Workshop, Dynamic Behaviour in UML
Models: Semantic Questions.

17. C. Snook, I. Oliver and M. Butler, The UML-B profile for formal systems modelling in
UML, In UML-B Specification for Proven Embedded Systems Design, Springer (In press
2004)

18. C. Snook, and M. Butler, U2B - A tool for translating UML-B models into B, In UML-B
Specification for Proven Embedded Systems Design, Springer (In press 2004)

19. Mermet, J. (ed.) UML-B Specification for Proven Embedded Systems Design, Springer (In
press 2004)

20. J-R Abrial, B#: Toward a synthesis between Z and B, In D.Bert, J.Bowen, S.King,
M.Walden, editors, ZB 2003: Formal Specification and Development in Z and B. Third
International Conference of B and Z Users, Lecture Notes in Computer Science, Vol.2651,
Springer, pp.168-178.

127

Appendix - B produced by U2B

B machine for first abstract level
MACHINE fman_a
SETS CONTROL_STATE={normal,frozen,hardfaulted}
DEFINITIONS
 type_invariant == (control_state : CONTROL_STATE) ;
 invariant == (type_invariant)
VARIABLES control_state
INVARIANT invariant
INITIALISATION
 control_state :(invariant & control_state = normal)
OPERATIONS /*EVENTS*/
 hardfault =
 SELECT control_state=frozen THEN
 control_state:=hardfaulted
 END ;
 freeze =
 SELECT control_state=normal THEN
 control_state:=frozen
 END ;
 unfreeze =
 SELECT control_state=frozen THEN
 control_state:=normal
 END
END

B refinement for the first refinement:
REFINEMENT fman_r1
REFINES fman_a
SETS INPUT
DEFINITIONS
 tests == input~ ;
 type_invariant == (
 ok : POW(INPUT) &
 suspect : POW(INPUT) &
 confirmed : POW(INPUT)) ;
 INPUT_invariant == (
 ok /\ suspect={} & ok /\ confirmed={} &
 suspect /\ confirmed={} &
 ok \/ suspect \/ confirmed = INPUT) ;

 invariant == (type_invariant & INPUT_invariant) ;
 refinement_relation == (
 ((control_state=normal) <=> (ok=INPUT)) &
 ((control_state=frozen) <=> (suspect/={} &
 confirmed={})) &
 ((control_state=hardfaulted) <=> (confirmed/={})))
VARIABLES ok, suspect, confirmed
INVARIANT invariant & refinement_relation
INITIALISATION
 ok, suspect, confirmed :(invariant &
 ok=INPUT & suspect={} & confirmed={})
OPERATIONS /*EVENTS*/
 first_bad =
 ANY thisINPUT WHERE thisINPUT:INPUT THEN
 SELECT confirmed={} THEN

128

 SELECT thisINPUT : ok & suspect={} THEN
 ok:=ok-{thisINPUT} ||
 suspect:=suspect\/{thisINPUT}
 END
 END
 END ;
etc.

B for the operation test:

ANY thisTEST,pval WHERE thisTEST:TEST & pval:NATURAL
THEN
 SELECT thisTEST : ok & pval>limit(thisTEST)
 THEN ok:=ok-{thisTEST} ||
 counting:=counting\/{thisTEST} ||
 count(thisTEST)=inc(thisTEST)
 WHEN thisTEST : ok & pval<=limit(thisTEST)
 THEN skip
 WHEN thisTEST : counting & pval>limit(thisTEST) &
 count(thisTEST)<climit(thisTEST)
 THEN count(thisTEST):=count(thisTEST)+inc(thisTEST)
 WHEN thisTEST : counting & pval>limit(thisTEST) &
 count(thisTEST) >=climit(thisTEST)
 THEN counting:=counting-{thisTEST} ||
 latched:=latched\/{thisTEST}
 WHEN thisTEST : counting & pval<=limit(thisTEST) &
 count(thisTEST)<=dec(thisTEST)
 THEN counting:=counting-{thisTEST} ||
 ok:=ok\/{thisTEST} || count(thisTEST):=0
 WHEN thisTEST : counting & pval<=limit(thisTEST) &
 count(thisTEST)>dec(thisTEST)
 THEN count(thisTEST):=count(thisTEST)- dec(thisTEST)
 END
END

129

From Misuse Cases to Collaboration Diagrams

in UML

Zaid Dwaikat1,2 and Francesco Parisi-Presicce1

1 George Mason University, Fairfax, VA
2 Software Productivity Consortium, Herndon, VA

zaldwaik@gmu.edu , fparisi@ise.gmu.edu

Abstract. Misuse and abuse cases are important concepts in software
security, as they provide a major benefit to systems designers: the ability
to think about abnormal scenarios. We present an approach that extends
the misuse concept to software design artifacts. Through well–defined
steps, we provide a mechanism to describe misuse behavior in collabora-
tion diagrams. The formal semantics of such diagrams are positive and
negative graphical constraints based on typed attributed graphs. The
methodology can be effectively used, in conjunction with misuse cases,
to develop more secure systems. The underlying semantics can be used
to detect and remove redundancies and conflicts.

1 Introduction

Information security is mostly concerned with malicious behavior and unex-
pected failures of systems. Thinking only about functionality does not address
most of the security aspects of software systems. The security of a system con-
stitutes a subset of the non-functional requirements (NFR); other NFRs include
availability, reliability and safety [1] . Functional requirements are well under-
stood in the software community and there is a wealth of literature on how to
derive and document them. NFRs are less understood and there is no agreed-
upon standard that can be used uniformly by system’s engineers.

From our experience in the field, NFRs typically take a lower priority than
functional requirements, as customers are driven by the need for certain func-
tionality. It is the job of the system designer to ensure that the system adheres
to a certain set of NFRs. Security requirements in software systems are often
overlooked and customers become aware of the need for secure systems only af-
ter a security incident (the system is attacked). This after the fact realization is
often costly, resulting in attempts to retrofit the system with security controls.

Misuse cases were presented in [17]. The concept of misuse or ”what a system
should not do” is applicable to a variety of systems including software systems.
Unexpected failures and flaws in the software design are hard to detect, and
just thinking about potential abuse and misuse of system functions provides
a good starting point to address security flaws in software systems. Use case
relationships are extended with prevents and detects in [17] and mitigates and

130

threatens in [2]. These additional relationships are needed to express the new
concept of misuse and describe counter measures to prevent (or at least reduce
the effect of) such misuse.

Software security is a process that is tied to all phases of the Software Devel-
opment Life Cycle (SDLC). Misuse cases provide a mechanism where developers
can think about the system security during requirements analysis. It can be ar-
gued that use and misuse cases generally benefit all phases of the SDLC, as they
provide a reference for architects and developers to validate many of their design
decisions. To our knowledge, misuse and abuse have only been addressed in use
and misuse cases and there have been no attempts to extend misuse concepts
to other UML artifacts. Identifying bad actors and their potential behavior is
only a start: to make this approach effective, software engineers need to address
misuse cases in their design, development and testing activities. Hence the need
to extend misuse cases to other SDLC phases and related UML artifacts.

Security flaws and bugs are hard to prevent by looking at one phase of the
SDLC. While proper requirements engineering is essential for developing secure
systems, design flaws and code bugs make up the majority of the security vul-
nerabilities that exist today. The need for secure coding practices cannot be
overemphasized. In [20] and [6] the authors present valuable practical knowledge
to designers and developers, but offer little formal methods.

Different methods have been recommended to address software security at
various levels. Principles and best practices [20] are discussed at length and
should be used in all software systems development. There are generic principles
that apply to all systems and platform- or language-specific best practices [15]
that need to be followed.

Other approaches deal with the need to check the artifacts produced by the
different phases of the SDLC. Architectural reviews are used to locate potential
flaws that may lead to security vulnerabilities. Code reviews present a way to
eliminate potentially dangerous calls in programming languages and security
bugs. Security testing verifies the proper functionality of the system’s security
controls, while penetration testing, a special case of security testing, simulates
attacks on a target system by insiders and outsiders to evaluate its defenses.

2 Related Work

In [16] the authors propose a reusable approach using standard use and misuse
cases. It is a novel approach and may gain some ground based on the potential
savings as a result of reuse. The difficulty arises from defining a standard set
of reusable use and misuse cases. Such standard set should be large enough to
cover most common situations, but at the same time practical enough for average
systems designers to use. Discussion on misuse case templates and structure is
detailed in [18]. Proper templates and descriptions are essential to the use of
this concept. While primarily text-based, use and misuse cases accompanied by
diagrams are easier to understand and follow. Both [18] and [5] provide useful

131

suggestions on what to include in misuse cases, but their analysis stops at the
requirements level.

In [1] further analysis is done that elaborates on the feasibility of misuse cases
in non-functional requirements. Specifically, security requirements, described in
Shall not statements or Shall statement with qualifiers, are derived based on
the analysis of misuse cases. Interactions between misuse and abuse cases is also
discussed in [13] and it is easy to see why misuse cases may be integrated with
use cases. Since a software system’s own functionality is often used to break
into the system, it is necessary to utilize use cases as well as misuse cases in
describing potential malicious behavior.

With regards to security engineering, we have identified two attempts at ex-
tending UML: UMLsec and SecureUML. In [8] UML is extended as UMLsec
to provide useful mechanisms for describing security properties for software sys-
tems. UMLsec does not perform a security analysis, but rather aids in conducting
such analysis. SecureUML [12] defines a Meta model for the specification and
modeling of security aspects of a software system in UML diagrams. Access con-
trol modeling is analyzed in [12] using the well known Role-Based Access Control
Model (RBAC).

3 Trust and Mistrust

Trust lies at the heart of security engineering and software systems are often
built with many assumptions about trust that may cause costly security prob-
lems, as developers often mishandle trust relationships leading to a variety of
security bugs [19]. Decisions about trust can be made at different levels in a soft-
ware system: software components trust each other, trust the operating system
and most often trust the users of the system. Questions about whom to trust
when developing software systems are numerous, and there usually are no simple
answers.

Trust is context sensitive. To make valid assumptions, it is important to
analyze the environment in which a software system is intended to operate. In
many cases, this environment is not well defined at the early stages of the SDLC,
and a complete implementation description is often not available while design
decisions about the system are being made. In other cases, users deploy systems
in ways never imagined by its creators. Ultimately, it is the users who define
how a system is deployed based on their needs and environmental and budget
constraints. Both situations lead to the same outcome: assumptions about trust
relationships (and other assumptions) may no longer be valid. This exposes the
system to attacks as a result of misplaced trust.

Since some trust is inevitable, how does a software architect define how much
trust is appropriate? Incorporating misuse concepts in this scenario adds great
value, as misuse cases clarify many trust relationships and their susceptibility to
abuse. Once an initial set of use cases has been developed, another pass is needed
to analyze misuse cases. A thorough analysis should reveal unacceptable trust
assumptions and allow software designers either to incorporate countermeasures,

132

or to remove such trust relationships. This process is iterative and can be ex-
tended into collaboration diagrams that can also be employed to express misuse
behavior. However, even the use of this methodology does not account for the
lack of information on environmental details or on users’ actions that violate
recommended implementation parameters.

4 Misuse in Collaboration Diagrams

Collaboration diagrams 1 show detailed interactions between objects [14]. In
combination with sequence diagrams, class diagrams and state machines, they
allow the visualization of data flow paths and information exchange between
system objects and components. A collaboration diagram is typically developed
for a certain task, and defines the participants with their roles and interactions
to accomplish a common objective. Its ability to show participants as well as
messages exchanged allows us to analyze trust relationships more easily.

4.1 Methodology

In this subsection, we present our methodology to extend misuse behavior to
collaboration diagrams. The misuse concept can be extended into collaboration
diagrams in the following manner:

– Use cases should be fully reflected in collaboration diagrams detailing the
functionality of the system

– Misuse cases should be incorporated into collaboration diagrams using an
inverted format [17]

– The mapping of mis–actors does not constitute designing such actors and
their actions in the system, but rather an acknowledgement of their existence
and their potential behavior. This serves two purposes: first, the ability to
visualize malicious behavior by the system designers should prompt them to
design mitigation techniques to counter such behavior; second, the expression
of mis–actors and their behavior provides a record that helps in explaining
certain design decisions

– Collaboration diagrams that represent undesired behavior should be flagged
as such. Security controls to eliminate or reduce the effects of the undesired
behavior should be incorporated in further design refinements

– In cases where a potential mitigation mechanism is feasible and can be archi-
tected into the system, such mitigation should be implemented. Mis–actors
need not exist in further refinements of the collaboration diagrams once such
mitigation has been implemented.

– In cases where mitigations are not feasible (e.g. too costly) mis–actors and
their behavior should remain in further refinements of the collaboration dia-
grams. This allows for a real reflection of the system’s behavior and accepted
risks that are attached to such behavior

These steps may be applied iteratively until an acceptable design is reached.
1 communication diagrams in UML 2.0 [3]

133

4.2 Example

To illustrate our methodology, we present a simple example that includes a use
case and a misuse case integrated into one diagram. Figure 1 shows a typical
access control mechanism where a user is asked to login to the system. The user
supplies the login credentials to be validated by the system, and the system
either accepts or rejects the login attempt. In the same diagram, a potential

Login

Validate Login
Credentials

extends
Obtain ID/Password

Intercept
Communication

includes

Try Multiple Logins

includes
includes

Fig. 1. Use and Misuse Case Diagram.

misuse is illustrated. This is a common situation we run into in software systems
that we analyze for various organizations. A mis–actor may intercept the login
credentials of a valid user and subsequently use such credentials to login to the
system. Alternatively, the mis–actor may try a brute force attack on the system
trying every possible password in successive login attempts. Both scenarios may
lead to unauthorized access to the system. Further technical details about these
types of attacks including feasibility, protocols and infrastructure are beyond
the scope of this paper. Figure 2 shows two collaboration diagrams illustrat-
ing use and misuse behavior2. The misuse diagram represents the brute force
attack scenario, showing, out of an unbounded number of login attempts, one
with only 3 attempts. Based on this diagram, a design decision may be made to
limit login attempts to two attempts (the number of attempts would be based
on a careful evaluation of the system users, of the environment and of the sup-
port mechanisms). The objective is to mitigate a brute force attack. Notice that
this behavior can also be a legitimate one, since users often forget (or misplace)
their passwords. Figure 3 shows a further refinement of our collaboration dia-
2 Other related,non misuse, diagrams (Class, sequence and state machine) are omitted

for space considerations

134

:Password Verifier

:Input Interface

1: login (id, pswd)

2: send (id, pswd)

3: out /= check
(id,pswd)

4A [out=BAD] : error

4B [out=OK] : continue

:Password Verifier

:Input Interface

9: login (id, pswd3)
5: login (id, pswd2)
1: login (id, pswd1)

10: send (id, pswd3)
6: send (id, pswd2)
2: send (id, pswd1)

11: BAD /= check (id,pswd3)
7: BAD /= check (id,pswd2)
3: BAD /= check (id,pswd1)

12 : error
8 : error
4 : error

Fig. 2. Normal Logins and Repeated Attempts.

:Password Verifier

:Input Interface

2.1: login (id, pswd)

3: send (id, pswd)

:Communication
Channel

1: login (id, pswd)

4: out /= check (id,pswd)

6A.1 [out=BAD] : error
6B.1 [out=OK] : continue
2.2: login (id, pswd)

5A [out=BAD] : error
5B [out=OK] : continue

6A.2 [out=BAD] : error
6B.2 [out=OK] : continue

Fig. 3. Collaboration Diagram: eavesdropping.

gram in Fig. 2, obtained by adding another object, Communication Channel (a
conceptualization of several communication channels, including keyboard cable,
computer bus, electromagnetic waves (wireless networks) and network cables),
to illustrate the ability of an attacker to intercept traffic between users and the
system. To mitigate the risk presented in Fig. 3, we add two new objects, En-
crypter and Decrypter, to the diagram. Figure 4 shows how the addition of these
two objects reduces the risk of interception through the use of encrypted traffic.
The previous collaboration diagrams illustrate two general views on misuse be-
havior: the diagram on the right of Fig. 2 indicates an unwanted behavior and
can be viewed as a negative constraint on the system; the diagrams in Fig. 3 and
Fig. 4 can be viewed, combined, as a positive constraint, requiring a mitigating
factor (encryption in Fig. 4) on a dangerous scenario (eavesdropping in Fig. 3).

135

:Input Interface

4: send (id,pswd)

1: login(id,pswd)

5: out /= check (id,pswd)

6A.1 [out=BAD] : error
6B.1 [out=OK] : continue
2.1: encryptlogin(id,pswd)

6A [out=BAD] : error
6B [out=OK] : continue

6A.2 [out=BAD] : error
6B.2 [out=OK] : continue

:Password Verifier

:Communication
Channel

:Encrypter
:Decrypter

2: encryptlogin(id,pswd)

2.2: encryptlogin(id,pswd)

3: login(id,pswd)

Fig. 4. Collaboration Diagram: mitigating intercept.

4.3 Semantics as Graphical Constraints

Constraints put limitations on the acceptable system states (in this context rep-
resented by collaboration diagrams) by either requiring a property or by forbid-
ding a certain configuration. Model constraints can be either specified graphically
or by OCL constraints. The latter ones, although part of UML, lack the visual
appeal and intuition provided by diagrams and graphs.

Viewing the collaboration diagrams resulting from misuse cases as constraints
on the system allows the (re)use of established results on graphical constraints
[11, 10]. Due to the graphical notation, UML diagrams can be represented as
attributed typed graphs.

Each class in a UML class diagram is a node of type class. The class name
is stored in the attribute name, the stereotype(s) in the attribute stereotype.
The UML class attributes and operations are represented as sets of tuples in the
attributes attributes and operations, respectively. Each tuple for a UML class
attribute contains information about the attribute’s name and the attribute type.
The tuple for the UML class operations has tuple elements for the operation’s
name, the parameter list and the return type. UML objects are represented in
a similar way. The graph node for a UML object has the graph attributes name
for the object name, class for the class name of which the object is an instance,
and attribute for the attribute values.

A positive graphical constraint is a total and injective graph morphism c :
X → Y and a graph G satisfies c if for all total and injective graph morphisms
p : X → G there exists a total and injective graph morphism q : Y → G so that
X

c→ Y
q→ G = X

p→ G. Informally, if G contains X , then it must also contain

136

Y \ c(X). A negative graphical constraint is a graph C and a graph G satisfies
C if there does not exist a total, injective graph morphism p : C → G.

The use of this formalism, then, allows the analysis of the constraints to deter-
mine possible conflicts between wanted and unwanted behavior, and to discover
redundancies among constraints. Although previously applied to access control
policies [10], there are several results to systematically determine whether a pos-
itive constraint requires entities or patterns prohibited by negative constraints
and, if so, how to modify either one to remove the conflict.

The graphical representation can be given by a collaboration diagram using
the stereotype <<exists>> to distinguish between positive and negative con-
straints:

positive constraint A collaboration diagram is a positive constraint if it con-
tains an object or a link with stereotype <<exists>>. The intended meaning
of this diagram is that whenever the object structure without the stereo-
type <<exists>> occurs, then the object structure with the stereotype
<<exists>> must also be present.

negative constraint A collaboration diagram is a negative constraint if there
are no objects or links with stereotype <<exists>>. The intended meaning
of this diagram is that the diagram in its entirety must not occur.

The framework in [10] can also be used by considering a refinement step (such as
the one from Fig. 3 to Fig. 4) as a rule (in the sense of [9, 11]) and then applying
rule-resolution algorithms in the presence of conflicts [10]. More work in this
direction is needed to transform these preliminary ideas into a usable tool.

5 Concluding Remarks

Misuse cases present a valuable tool for security engineering. Building secure sys-
tems requires designers to think beyond the system functionality and its intended
users, and to consider potential behavior that violates the system’s security pol-
icy. In this paper we propose to extend the misuse concept to other phases of the
SDLC. Specifically, we incorporate misuse behavior into collaboration diagrams,
and show, using a simple example, how our methodology can be applied. So far
misuse has only been applied to use cases UML artifacts.

The next step is to use a more complex and realistic example to provide
us with feedback on the validity and feasibility of our approach. Another area
that requires further investigation is a formal definition of our methodology. In
the last section we present an overview of a methodology that can be used to
define our approach. Further discussion will apply such methodology and derive
specific semantics for incorporating misuse into collaboration diagrams.

We also believe that further extensions of misuse behavior should be ex-
pressed in other UML diagrams. Class diagrams and state diagrams are two
important artifacts where security engineering can benefit from misuse analysis.
There is also a need to adapt our work to the more recent standard UML2.0.
At some point during the design, the boundaries between use and misuse may
disappear, especially when describing regular users that may abuse the system.

137

References

1. I. Alexander. Misuse Cases help to elicit Nonfunctional Requirements. In Proc. 8
th Int. Workshop REFSQ’2002

2. I. Alexander. Misuse cases: Use cases with hostile intent. In IEEE Software, vol.20,
no.1, 2003, 58–66.

3. S. Ambler. What is new in UML2. In Software Development Magazine, Feb. 2004.
4. E. Fernandez-Medina, A. Martinez, C. Medina, and M. Piattini. Uml for the design

of secure databases: Integrating security levels, user roles, and constraints in the
database design process. In Jürjens et al. [7], pages 93–106.

5. D.G. Firesmith. Security Use Cases. In Journal of Object Technology, 2(3),
May/June2003, 53–64.

6. M. Howard and D. LeBlanc. Writing Secure Code. 2nd ed. Microsoft Press, 2002.
7. Jürjens, Cengarle, Fernandez, Rumpe, and Sandner, editors. Critical Systems De-

velopment with UML, number TUM-I0208 in Technical Report TU München, 2002.
8. J. Jürjens. UMLsec: extending UML for Secure Systems Development. In Proc.

UML’02, number 2460 in LNCS, pages 412–425. Springer, 2002.
9. M. Koch, L. Mancini, and F. Parisi-Presicce. Foundations for a graph-based ap-

proach to the Specification of Access Control Policies. In F.Honsell and M.Miculan,
eds., Proc. FoSSaCS 2001, Lect. Notes in Comp. Sci. Springer, March 2001.

10. M. Koch, L. Mancini, F. Parisi-Presicce. Conflict Detection and Resolution in
Access Control Specifications. In M.Nielsen and U.Engberg, eds., Proc. FoSSaCS
2002, Lect. Notes in Comp. Sci., pages 223–237. Springer, 2002.

11. M. Koch, and F. Parisi-Presicce. Access Control Policy Specification in UML. In
Jürjens et al. [7], pages 63–78

12. T. Lodderstedt, D. Basin, and J. Doser. SecureUML:A UML-Based Modeling
Language for Model-Driven Security. In Proc. of UML 2002, number 2460 in
LNCS, pages 426–441. Springer, 2002

13. J. McDermott and C. Fox. Using Abuse-case Models for Security Requirements
Analysis. In Proc. Annual Computer Security Applications Conf. ACSAC’99, 1999

14. Object Management Group (OMG). Unified Modeling Language UML. version
1.5, March2003.

15. The Open Web Application Security Project. Guide to building Secure Web Ap-
plications. www.owasp.org, 2004.

16. G. Sindre, D.G. Firesmith, and A. Opdahl. A Reuse-Based Approach to determin-
ing Security Requirements. In Proc. 9 th Int. Workshop REFSQ’2003

17. G. Sindre, and A. Opdahl. Eliciting Security Requirements by Misuse Cases. In
Proc. IEEE TOOLS-37, pages 120-131, IEEE CS Press, 2000

18. G. Sindre, and A. Opdahl. Templates for Misuse Case Description. In Proc.7 th
Int. Workshop REFSQ’2001

19. J. Viega, T.Knono and B.Potter. Trust (and Mistrust) in Secure Applications.
Communication of the ACM, 44:2, pages 31–37, 2001.

20. J. Viega and G. McGraw. Building Secure Software: How to Avoid Security Prob-
lems the Right Way. Addison-Wesley, 2001.

138

Formal Specification of

Security-relevant Properties of User Interfaces1

Bernhard Beckert Gerd Beuster

{beckert|gb}@uni-koblenz.de

University of Koblenz
Department of Computer Science

Abstract. When sensitive information is exchanged with the user of
a computer system, the security of the system’s user interface must be
considered. In this paper, we show how security relevant properties of a
user interface can be modelled and specified using the Object Constraint
Language (OCL).

1 Introduction

A large part of the specification of interactive applications is concerned with
the relation between user input and the information shown to the user. For
example, when editing a text, the current (internal) state of the text should be
shown to the user, and user input should cause changes to the text. Usually, the
specification of user input and system output is rather informal. Specifications
declare that something “is shown on the screen” and the user “enters a text.”
In most cases, this informal description is sufficient. However, in security-critical
applications, a precise and formal definition is desirable. In this paper, we show
how security relevant properties of a user interface can be modelled, investigated,
and ensured using formal methods.

2 Environment and Notation

In this paper, we model a text-based user interface. Input comes from the key-
board and output goes to a terminal with a fixed number of rows and columns
for display of characters. Assuming no additional input from other sources (like
a mouse or network card), the behavior of a text-based application can be de-
scribed as a function from a (finite) sequence of keystrokes to a screen output.
That is, the behavior is specified by what is supposed to appear on the screen
after a particular sequence of keystrokes. We use keyboard to refer to keyboard
input and screenAt to refer to screen output. When we want to refer to a specific

1 This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project
under grant 01 IS C38. The responsibility for this article lies with the authors. See
http://www.verisoft.de for more information about Verisoft.

139

screen position, we use the notation screenAt[x, y] for the character shown at
screen position (x, y).

To refer to keyboard input up to resp. screen output at a particular point t
in time, we use keyboard(t) to denote the list of keystrokes entered up to time t,
and screenAt(t) to denote the screen output at time t.

In a post-condition, t refers to the current time, i.e., the point in time when
the function terminates, while t@pre refers to the point in time when the function
is entered. In this, we follow the common OCL syntax (though standard OCL
does usually not contain explicit references to particular points in time).

3 Specifying Operating System Requirements

3.1 Overview

The operating system provides interfaces between application programs and the
hardware. In the case of simple, text-based user interfaces, which we are exam-
ining in this paper, the operating system has to provide access to two resources:
the keyboard and the screen. Most work on secure interface design assumes that
the application runs in a safe and friendly environment. Although some work
takes attacks on input/output facilities from the outside into account, interfer-
ence with the input/output facilities from within the system (by trojans, worms,
viruses, etc.) is usually not part of the attack scenarios. Here, we assume that
the security critical application is running in a multi-process environment, where
hostile processes may launch attacks on input/output facilities. We provide a for-
mal method that guarantees security against software based man-in-the-middle
attacks.

3.2 Specifying Screen Output Functions

Below, we give constraints specifying the operating system functions for accessing
the screen.

context setChar(character, x,y)

post if ((x ≥ 0) and (x < screenWidth()) and
(y ≥ 0) and (y < screenHeight()))

then
screenAt(t)[x, y] = character and
result = CHAR SET OK

else
result = POSITION OUT OF BOUNDS

endif

3.3 Specifying Keyboard Input Functions

Since user input comes from the keyboard, we can identify all user input during
the lifetime of the application with a list of keystrokes, where a keystroke is a
character (a character code) associated with a timestamp.

140

Usually, computer systems have an input buffer. This buffer is filled with the
user’s keystrokes independently of the current application’s activity. When the
application calls the operating system function for retrieving the next keystroke,
the first keystroke of the keyboard buffer is returned. In the scenarios we are
modeling, however, the use of a keyboard buffer is often not advisable. From the
view of security, we want that the user approves or denies an activity only after
he or she is aware of the options available. With a keyboard buffer, a user may
enter commands that are executed at a later point in time. It could then happen
that the user approves or denies an activity before the available options are shown
to him or her. Therefore, we define the operating system function getkeystroke

without using an input buffer. The function getkeystroke is specified to return
the next character typed after its invocation.

context getkeystroke()

post result ∈ keyboard(t) and
timestamp(result) > t@pre and
not ∃k ∈ keyboard(t) :

(timestamp(k) > t@pre and
timestamp(k) < timestamp(result))

3.4 Specifying Security-relevant Properties

Under security aspects, a key requirement for a system using keyboard input
and screen output is the impossibility of man-in-the-middle attacks against the
keyboard and the screen. If an attacker can get in between the legitimate appli-
cation and its input/output facilities, the attacker can manipulate the user at
will.

There is no easy way to prevent physical man-in-the-middle attacks like, for
example, covering the real keyboard with a faked keyboard as described in [2].
However, the prevention of software-based attacks with trojans, worms, viruses
etc. is possible if the operating system provides means to guarantee exclusive
access to the keyboard and screen. We call the process of acquiring exclusive
access “locking” and the release of the lock “unlocking.”

We consider information on whether screen and keyboard are locked and by
which process to be part of the current configuration (i.e., the status) of the
operating system. In the specification of requirements for the operating system,
one has to refer to this information and other configuration details. For that
purpose, we assume the relevant parts of the operating system configuration to
be stored in a data structure (a class) OSConf with the following class attributes:

OSConf.screenLocked

OSConf.keyboardLocked

OSConf.ioStatus

OSConf.screenLocked and OSConf.keyboardLocked contain the process IDs
(PIDs) of the processes locking the screen resp. the keyboard. A PID of 0 means
that the resource is not locked. The third attribute OSConf.ioStatus can have
the values busy and waiting. It indicates whether the system is busy or is

141

Conf.command Last issued command

Conf.commandResult Result of last command

Conf.applicConf Application-specific part of configuration
Table 1. Configuration of an application.

waiting for input. While it is busy, all input is discarded (see comment about
input buffers in Chapter 3.3).

Locking a resource is not sufficient to guarantee security. The user must
also know which process locks a resource and whether the system is busy or
not. Therefore, the operating system configuration must be shown to the user
represented by a string of characters. We assume this string representation to
be given by the function OSConfString : OSConf→ String , which we do not
further specify here. It must return a string that allows the user to determine
the exact operating system configuration. Its actual implementation depends,
for example, on the language(s) the user is supposed to understand.

We assume that the first line of the screen is reserved for information on
the operating system configuration, i.e., the first line should be identical to
OSConfString(OSConf).

We specify the correct display of the operating configuration resources as an
invariant of OSConf:

context OSConf

inv stringAt(t)[0, 0] = OSConfString(OSConf)

In the following we give a constraint for the operating system call for locking
the screen. The calls for locking the keyboard and unlocking the resources are
equivalent. Here PID refers to the PID of the current application.

context lockscreen()

post if OSConf.screenLocked@pre = 0
then
OSConf.screenLocked = PID and
result = SCREEN LOCKED OK

else
result = SCREEN LOCKED BY OTHER

endif

4 Security of Interactive Applications

4.1 Overview

In Chapter 3, we showed how to specify security-relevant properties of input/out-
put functions provided by an operating system. By ensuring and verifying these
properties, certain types of software-based man-in-the-middle attacks can be
prevented.

142

There are, however, other essential aspects of a secure software system. In this
chapter, we are going to introduce a method for specifying properties of appli-
cations that are desirable both for security and usability. Namely, the following
properties are considered:

1. The user is always aware of the state of the system.
2. User input is only possible if the screen output is consistent.
3. Results of user actions are communicated to the user.

On an abstract level, the behavior

Sign Text
[Key Available]

Not
Signed

Signed

Fig. 1. State Chart Example

of text-based interactive applications
can be described using state charts.
Edges are labeled with keystrokes, guard
conditions, or both, as shown in Fig-
ure 1. In this example, the system

transits from state Not Signed to state Signed if the command “Sign Text”

is issued and the guard condition “Key Available” is satisfied. Of course, the
states in such as state chart are abstractions of the application’s actual inter-
nal configuration, which is much richer in detail. Nevertheless, we assume that
these states are the right abstraction in that the user has sufficient information
about the internal configuration of the application if he or she knows in what
abstract state the application is. Since, as said above, we also want the user
to know what the result of the last issued command was, we define the config-
uration Conf of the application to contain—besides an application-dependend
part Conf.applicConf—the last issued command Conf.command, and the result
Conf.commandResult of that command, which can take the special valued none

if the command is not yet completed (see Table 1).
Now, two aspects of the application have to be specified:

1. The way in which the configuration is related to screen output; and how
keyboard input corresponds to commands.

2. The effect that the execution of a command has, which must implement the
abstract behavior specified by the state chart.

4.2 Specification of Input/Output Behavior

For the specifiation of the first aspect (input and output), we assume the follow-
ing to be given (see Table 2):

– stateAsString(state) is a string that allows the user to determine what the
state of the application is.

– resultAsString(commandResult) is a string that allows the user to determine
what the result of the last issued command is.

– screenOutput(applicConf) is a two-dimensional array of characters. It con-
tains the correct screen output corresponding to applicConf. Its dimensions
are screenWidth() and screenHeight()− 3.

– command(char) is the command that is issued by entering char on the
keyboard.

143

Name Description

stateAsString Textual representation of the state

resultAsString Textual representation of a command result

screenOutput Screen output for a configuration

command Command issued by entering a character

state State abstraction of a configuration

newState Next state when a command is issued in a certain
configuration

result Result of a command in a certain configuration
Table 2. Functions specifying an application.

We demand that stateAsString(state) is shown on the second line of the screen,
and resultAsString(commandResult) on the third line (remember that the first
line is reserved for the operating system’s status line), which is why
screenOutput(applicConf) must have a height of screenHeight()− 3.

Thus, the function updateScreen can be specified as follows. It is the appli-
cation’s function for updating the screen contents (using the operating system
function setChar).

context updateScreen()

post stringAt(t)[0, 1] =
stateAsString(state(Conf.applicConf)) and

stringAt(t)[0, 2] =
resultAsString(Conf.commandResult) and

∀k ∈ {3, . . . , screenHeight()− 1} :
stringAt(t)[0, k] =

screenOutput(Conf.applicConf)[k]

4.3 Specification of Command Execution

For the specification of the second aspect (command execution), we assume the
following to be given (see Table 2):

– state(applicConf) is the state abstraction of the application configuration.

– newState(applicConf, command) specifies the state transition. (It has
applicConf as an argument and not, as one might expect, the abstraction
state(applicConf), because it depends on guard conditions that can only be
evaluated using the concrete application configuration.

– result(applicConf, command) is the result of executing command when the
application is in configuration applicConf.

Now, the function execute can be specified. It executes a command and
implements the state transition by changing the application configuration.

144

context execute()

post state(Conf.applicConf) =
newState(Conf.applicConf@pre,

Conf.command@pre)
Conf.commandResult =

result(Conf.applicConf@pre,
Conf.command@pre)

4.4 The Application’s Main Algorithm

Now, we have everything at hand to describe how the main algorithm of the
application works: First, screen and keyboard are locked. Then, in the main
loop, commands are read and executed while keeping the screen updated. These
steps are arranged in the following way:

– Screen and keyboard are locked immediately on program start and unlocked
when the program quits. If locking the screen or the keyboard fails, the
program terminates.

– Whenever the program is waiting for user input, the screen is up to date.
Commands can be issued only when the system is waiting. All keystrokes
entered during processing are discarded. By this we ensure that the user
issues a command only when the current configuration of the system is visible
on the screen.

– When processing is finished, the loop starts over again unless the user has
issued the command “quit.”

Pseudo for the main execution loop is given in Algorithm 1.

Algorithm 1 The application’s main algorithm

1: if not (lockkeyboard() = KEYBOARD LOCKED OK) then
2: Exit
3: end if
4: if not (lockscreen() = SCREEN LOCKED OK) then
5: Exit
6: end if
7: {OSConf.screenLocked = PID and OSConf.keyboardLocked = PID}
8: repeat
9: updateScreen()

10: Conf.command = command(key(getkeystroke()))
11: Conf.commandResult = none

12: updateScreen()

13: execute()

14: until Conf.command = QUIT

The consistency of the screen output follows from the algorithm and the spec-
ification of getkeystroke. The screen is up to date when the system is waiting
for user input, and immediately after user input, and it may be inconsistent in

145

between. Since the operating system displays status information “waiting” when
the system is waiting for user input and “busy” when it is not, the user knows
when the display must be consistent (whenever the system is waiting for user
input). The situation would become more complicated if we used an input buffer.
In that case, there is no longer a direct relationship between waiting/busy status
and the consistency of screen output. It would be necessary to show an extra
“consistency flag” on the screen.

5 Conclusions and Future Work

In Chapter 3 we gave a formal specification for text-based input/output functions
of an operating system. This formalism can be extended to other input/output
devices, e.g., card readers and graphical terminals. Additionally, we showed how
to protect against software-based attacks on input/output resources. These secu-
rity measurements require special functionality of the operating system. It must
be able to grant processes exclusive access to input/output resources. Moreover,
dedicated screen areas must be provided for information on who is locking the
resources. This area must not be writable for anybody except the operating
system.

The method we propose does not make any claims about what happens
outside the realm of software. It cannot guarantee that an output device operates
as intended, nor can it prevent tempering with the hardware of input/output
devices.

In Chapter 4, we described a state-chart-based method for the formal spec-
ification of interactive applications. This formalism takes both security and us-
ability aspects into consideration.

Our future work will go into two directions: As part of the Verisoft project
(http://www.verisoft.de), the methods introduced in this paper are used to
formally specify an email client. In Verisoft, both the operating system and the
application program will be formally verified based on that specification.

The other direction of further work is to develop formal methods for the
specification of applications that have richer user interfaces than a purely text
based interface.

References

1. G. D. Abowd, J. P. Bowen, A. J. Dix, M. D. Harrison, and R. Took. User interface
languages: A survey of existing methods. Technical Report PRG-TR-5-89, Oxford
University Computing Laboratory, October 1989.

2. L. Bussard and Y. Roudier. Authentication in ubiquitous computing. In UBI-
COMP 2002, Workshop on Security in Ubiquitous Computing, Göteborg, Sweden,
September 2002.

3. A. Dix and G. Abowd. Modelling status and event behaviour of interactive systems.
Software Engineering Journal, 11(6):334–346, 1996.

4. V. Jain. User interface description formalisms. Technical report, McGill University
School of Computer Science, Montréal, Canada, 1994.

5. B. Sufrin. Formal specification of a display editor. Science of Computer Program-
ming, pages 157–202, 1982.

146

147

148

Towards Engineering Development of Distributed

Stochastic Hybrid Systems with UML

Manuela L. Bujorianu

Department of Engineering

University of Cambridge,

Email: lmb56@eng.cam.ac.uk

Marius C. Bujorianu

Computing Laboratory

University of Kent

Email mcb8@kent.ac.uk

Abstract

We propose a UML implementation of a parallel and communication extension of
stochastic hybrid system. For stochastic hybrid systems we use the model introduced in
[4], namely GSHS (general stochastic hybrid systems). It generalizes the most used models
of stochastic hybrid systems used in control engineering. The stochastic features of the
model make difficult this attempt. From a computer science perspective our approach
uses a mixture of ACP and CCS techniques.
We use the concept of distributed stochastic hybrid systems (DSHS) [5] as an automata
formalism for compositional specifications of GSHS. A DSHS can be thought of as an
automaton representation of a GSHS, with an extra possibility to interact with other
processes via so-called passive transitions (which are discrete transitions). We sketche
how to extend the syntax of the Charon system, that is an UML implementation, in order
to implement DSHS.

We present the DSHS formalism in a simplified version (a detailed presentation can
be found in [5]). A DSHS, denoted by DH, is a collection ((Q, d,m,X), (f,σ),L,A,P)
where: (i) (Q,d,m,X) describes the state space, which is countable union of open sets
from an euclidean space (modes), each one corresponding to a discrete location. Note that
the dimension of embedding euclidean space might be different for different locations. (ii)
(f,σ) gives the continuous dynamics between jumps of the continuous state within the
locations. (iii) L is the set of labels. (iv) A are the set of active transitions. These
are the union of the boundary-hit transitions B and the spontaneous transitions S. The
boundary-hit transitions B depend on the transition-choice function C.
A realization of a DSHS generates a stochastic process. The structure of a DSHS assures
that this process is a GSHS. We will refer to this process as the associated GSHS to the
given DSHS. For the generation of the DSHS executions we assume that no communication
takes place, therefore the passive transitions do not play any role in the generation of
executions.

Parallelism is introduced in an axiomatic manner as in the ACP tradition. Com-
munication is based on dually labelled transitions (where duality means sent/received
transitions or active/passive transitions). Communication takes place as a handshake be-
tween dually labelled transitions. A detail presentations of the parallel composition and
communication for DSHS can be found in [5].

General models of stochastic systems are specified with enough accuracy in the classical
language of continuous mathematics. After adding concurrency the system dynamics
are getting very complex, thus there is the danger of confusion. In this context system
specification is becoming increasingly important. A specific implementation of UML,

1

149

considering extensions to support control and hybrid systems is the Charon system [1].
We sketch how it is possible to implement our model in an extension of the modelling

language Charon obtained in a similar manner as in [2]. The language supports the
operations of composition of agents to model concurrency, hiding of variables to restrict
sharing of information, and instantiation of agents to support reuse. To make Charon
suitable for implementation of DSHS, it is possible to extend the current version with
syntax for specifying initial probabilities, jumps, and stochastic differential equations. In
the terminology of Charon any DSHS is an agent.

The syntax for specifying an invariant is inv <condition> where condition can
depend on the variables of the agent.

A jump can be specified as follows
jump from <source_mode> when <guard>

(to <destination_mode> do {<update_cv>} weight <weight>)+

where the guard depends on the variables of the agent and defines a part of the complement
of the invariant assigned to the source mode. The union of the guards of all jumps from
a mode must be equivalent to the complement of the invariant of the mode. A jump
has multiple transition branches. Each branch is specified by its destination mode, post
jump location, and the weight assigned to it. The weight can depend on the variables
of the agent. The post jump location <update_cv> is an assignment of the following
form: variable_name=f(...) where f is a function specifying the distribution of the
transition measure. Function f can depend on the variables of the agent. The post jump
location specifies the probability measure on the set of valuations of the destination mode.
The function f is built using the predefined distributions.

An SDE is specified by
SDE {d(<variable name>)==f(...)∗dt+σ(...)∗dW(t)}

where f(...) and σ(...) are functions which depend on the variables of the agent.
Distribution is defined using the intimate structure of sequential processes. This model

requires a very rich concept of abstract state machine.

References

[1] R. Alur, R. Grosu, Y. Hur, V. Kumar, I. Lee. Modular Specifications of Hybrid Sys-

tems in CHARON. Proceedings of Third International Workshop on Hybrid Systems:
Computation and Control, LNCS 1790, pp. 6-19, 2000.

[2] M. Bernadskiy, R. Sharykin, R. Alur. Structured Modelling of Con-

current Stochastic Hybrid Systems. Formats 2004. Available from
http://www.cis.upenn.edu/~alur/Formats04.ps

[3] E.A. Boiten, M.C. Bujorianu. Exploring UML Refinement through Unification. Work-
shop on Critical Systems Development with UML, <<U M L>> 2003, San Francisco,
California, USA, October 20 - 24, 2003.

[4] M.L. Bujorianu, J. Lygeros. General Stochastic Hybrid Systems. IEEE Mediterranean
Conference on Control and Automation MED’04, 2004.

[5] M.L. Bujorianu, M.C. Bujorianu. A Distributed Extension of Stochastic Hybrid Sys-

tems. submitted.

[6] S.N. Strubbe, A.A. Julius, A.J. van der Schaft. Communicating Piecewise Determinis-
tic Markov Processes. Preprints Conference on Analysis and Design of Hybrid Systems
ADHS 03, pp.349-354, 2003.

2

150

���������
	����������������� �����������������������! �"���	#�$���
%��'&����$��(*)+���,�.-/	��10'�2"�"43/�657�8"9�+:;�� ���<

=?>A@CB*DEBGFIHCJLKMBONQPARGSUTCVCWGX�Y[ZA\OW�Y^]?TO_a`2KMBCK�bEcedLdLfgKMhi_Ij*kmln@IoaK�f�=?o?l$>?pIJ[K�B�_Uj!oAHIJrqts
=?KMBIJLKMB�_C=?KMBuJ2b�sI`'vAKMwyx�BIHUK�hzJLKMB�_CoABIH{x2BIHUK�hzJ'|�su`2o~}GB

���y�Q�
�������U�M�^�E���?���i�z�^�������
���r���i�i�M� ���M���U�M�^�

�M�~�M ~¡�¢¤£�¥e¦�¡e¦i§¨£^©$ aªM«a¦e¬i¦e©u£®A¬~�$¡e¯a¦°£���§e¥eªO£�ªM«a¥A±$²A³~©O´yª$µQ³O´®¯�¢

¶�·¨¸n¹nº$»G¼�¹i½8¾�¿ ���8ÀQ��ÀU�z�
ÀA�^�n���n�e�^�8�iÁA���zÂAÀU�z�^���n�QÃn��Ä#��� ¿ ��ÁQÃnÃn�z���yÅmÁQ�����Æ���e�^� �
�M�[�M�^���Q��� ¿ �2�'Ç,ÈÉ�����?Ê � �^�e���ÌËUÍ ¿ ��À?���aÎA�eËG���e�^�8� ¿ �2����ÅÏ��Ä��M�^�EÎA�n�~�n����ÀQÐ8�n�e�
ÀA�^�eÃn�n���2��Å��
��Ð��M����Ãn��Ð8ÀG�M�a��À?�^�aÎAÁQÃn���Q� ¿ ��� ¿ÒÑ ÁG�M�����®�1�nÐ�U�ÓÎ?Î?�ÓÎ,�y�A�y�^�nÐ8�nÔ
¾�¿ ��Ãz�iÐ8ÀG�M�e� ¿ �iÎ��Q���Õ�U�n�z�,ÁQ�����Q�8Ö��A×��nÃz��ÖØ�^���n�e�^�ÓÎ,�Ø�Q�����A����� � �n�����i�1���QÎ
Ù �^�i�M�[��Ð8Ð8���Q�AË����QÎÉ� ¿ ���
À?�^���Q���nÐ.Ä������M���[��Ã[Ú~�ÓÎÆ�a�ÆÎA�n�~�n���iÀ?���Q�*��ÀA�^���^� �
�®�?À?��ÃÓ���9��À?ÀQ����ÃÓ�M�^���i�Ò� ¿ �M�2Ãn���{�U�ÁQ���ÓÎÒ������ÀG�$���^�z�^�1Åm���ÛÎA�n�~�n���iÀU�L�^������� ¿ �
Ãn��Ð8ÀG�M�a�eÔ � �eÃzÁQÐ8�n�e�[�M�^�������ÅQ� ¿ �#��À?ÀQ����ÃÓ�M�^�����uË~���?Ãn��ÁGÎ?���?���^�n�y�¤��ÀU�nÃn��ÜGÃn�M�^���i�?�
�M�GÎÒ���n�Q�L�[�M�^�ÓÎÒ���GÎ ¿ �M�GÎ1Ãn�aÎ?�ÓÎ�À?�^�����[��Ð8�nËI���'Ú~�nÀA�rÄ#��� ¿ ���Ò� ¿ ��^�e�i�ÌËu��ÁQÃ ¿
� ¿ �M�#� ¿ ���^�e���u���^Á?�����M�������y�^�Õ����� ¿ �ØÅmÁQ���uÎ?�n�i�n���iÀQÐ8�z�a��À?�^�eÃn�n���nÔQÝ��ÓÄ��z�~�z�ÓËA� ¿ �
Ð8���y�9Ã ¿ �M�����z�Q�i���?��M��ÀU�nÃz�9���8��Á?�¤ÃÓ�M���Ø�y�^ÁQÎA��Ä������^�'ÃnÁ?�y�^�iÐ8��Þn��� ¿ ���^�e���G��ÁQÃ ¿
� ¿ �M�r���ØÃn�iÁ?��Î1��Á?ÀQÀU�M���rÃn���QÃnÁA���^�n�e���n�?�i���Q�z�z�^���Q�
���QÎ1��ÀU�zÃn�����¨ÀQ���$��Åm���^Ð8�nÔQß��
ÎA����ÃzÁQ���#� ¿ �n���rÐ��$���^�z�^�����;Î?�L�[�����ÌÔ

j!oaBGv�J[à;oafgf9oABIH*à,K�HCkÏFCàáJLkgâMK�HÉl$>Aà,ãIoABCkgK�J�oAhLK
ãChL>UHUFul$kgBCä1KMà�puKiHCHUKiH!J[vUJ[dLK�à,J
å @Ckgln@æoahzK
kgBIl$hzK�o?J[kgBCä?fÏv*JL>açÌd å oahzK�kÏBQdzKMBIJLkÏ}?KAs¨èr@CkmJEJ[>AçÌd å oAhLK�BCKMKiHCJÛdL>{puK�@CkgäA@Cfgv!HUK$w
ãuK�BIHCoapIfÏK?_OpOK�l�oaFIJLK�k�dEkgJEoABÉkgB?dzKMä?hzoAf¤ãIoAh[dE>açØo�à;oAJzJ^wyãChz>GHCFIl$KiH*ãChz>GHCFIlÓd å @Ckmln@!dL@IK
l$FIJ[dL>?à�K�hzJ�K$éUãOK�l$d�dz> å >AhzêëJLà,>G>adL@IfÏvæçì>Ah�dL@IKMkgh�fgkÏçìK$dLkgà,KAs#íI>Ah�dL@CkmJ�hLKioAJL>AB�_�J[FIln@îo
l$>Aà,ãIoABGvÒdzKMBIH!dL>{@Io~}AK�o�HUKMïIBCKiHÆJL>açÌd å oahzK�ãChz>Ul$K�JzJ å k�dz@ÆHU>Ul$FIà�K�BQdLK�HÉãChz>GlMK�HUFIhLKiJ
çì>AhEHUK�JLkÏä?B�_uHCKM}AK�fÏ>?ãCà,KMBQdoABIH{dLKiJ^diðOdL@CK�v�oAãCãChzK�lMkgoadLK8dz@CK�lM>?J[dÛ>açÕJL>açÌd å oahzK�HUK�}AKMfg>AãCw
à�K�BQd�_IoABIHÒoAhLKEê?KMKMBÒdL>,ïuBIH å o~vUJ�>aç�à,oAêGkÏBCä�dz@CK8ãChz>GlMK�JzJrà,>AhzKÛKMñ;lMkÏK�BQd�s

qò@CKMB å K å KMhzK,oaãCãChz>?o?ln@CK�HÉpGv*dL@CK1lM>Aà,ãIoABQv?_°dL@CK1JLFCpUó^KilÓd�>AçÕdL@IkgJ�l�oAJLK$w�J^dzFIHUv?_
dL@CK�v,çì>Ahzà
FCfmoedzK�H�dL@IKMkgh�KMéUãuKilÓdzoadLkg>ABIJ�oAJ#çì>AfgfÏ> å J�ôGõaqæK�@Io~}?K2kÏBG}?K�J[dLK�H1kÏB�o
fÏkml$K�BIJLK�çì>?h
dL@CK,`'@IoAãIJ[>UHUv�dz>G>Af�oaBIH å K å >?FCfmH*fÏkgêAK�vA>?F*dL>{@CK�fÏãÆFIJÛdL>ÒïCdkÏd8kÏBQdz>Ò>?FChJL>açÌd å oahzK
HUKM}?KMfg>AãCà,KMBQd�ãIhL>Ul$KiJLJ�_ÕJLFIln@ödL@uoed1dz@CkgJÒãChz>Ul$K�JzJ;kmJ1à;oAHCK;ó^FIJ[d{oAJÒHUKMãOKMBuHCoapCfgKÉoABIH
à,oABIoaä?K�oApCfÏK2o?JÕ>?FChÕ@uoahnH å oAhLK'HUK�}AK�fÏ>?ãCà,KMBQdØãChz>Ul$KiJLJ2÷ å @Ckmln@�kmJÕHU>?BCK�FIJLkgBCä,ø�o?HUKMBIlMK
dL>G>AfmJzù[õCs

èr@CK{lM>ABQdLhzkgpCFUdLkg>AB�>aç�dz@CkmJ�ãuoaãOKMh,kgJ�dz@QFuJ�oæHUKiJLlMhLkgãUdLkg>ABúoaBIHîHUkmJLlMFIJLJLkg>ABû>Aç�dL@IK
J^dzKMãIJdz@Ioed8à;o~v!pOK�dnoaê?KMB!dz>*J[FIl�l$KiJLJ[çìFCfgfÏv!kgBQdLK�äAhnoedLK�dL>G>?f�JLFCãCãO>AhLdLKiH¨_¨à,>UHUKMf#puoAJLK�H
HUK�JLkÏä?B!oaBIH*HCKM}AK�fÏ>?ãCà,KMBQd�à,K$dz@C>UHCJÛkÏBQdL>Òo1J[à;oAfÏf�l$>Aà,ãIoABGv�ãChz>UHUFIl$kgBCä1@IkÏä?@ÉüQFIoafgk�d^v
KMà
pOK�HIHUK�H�JLvGJ[dLK�à;JMs

ý FCh
oaBuoafgvGJLkmJE>açrdL@CK�hLKiü?FIkÏhzKMà,KMBQdnJEçì>Ah
o*JLFIl�l$K�JzJ[çìFCfÕkgBQdLKMä?hzoadLkg>ABæä?o~}?K�FuJ8dL@IhLK�K
kÏà,ãO>AhLdzoaBQd2JLFIlMlMK�JzJ'l$hzk�dzKMhzkgoIô
þ s'J[à,>G>adz@ÿKMà�puKiHCHUkgBCä!>aç��������	��
�����������������������������	���rkÏBQdz>�dL@CKÒK$éUkgJ[dLkgBCäÉJL>açÌd å oahzK
ãChz>GlMK�JzJM_

151

� srpuKMd[dzKMhrl$>ABQdzhL>?fC>aç����� ��"!��#�$��!��%�&��!��'�&���,K	(O>?h[dnJM_akgB1ãIoAh[dzkglMFCfmoahÕoad#dL@CKÛJ[vUJ[dLKMà fgKM}AK�f®_
oaBIH

) sr}AK�hzJLkÏ>?BÒlM>ABQdLhz>AfgfÏKiH*���+�,�,-�.!��'�&���us
øØ>GHCK�äAK�BCKMhnoedzkÏ>?B{kmJÛBC>adÛo1êAKMv{kmJLJLFCKAðupCFUdêAKMK�ãCkgBCä,dLhnoAlnê{>aç0/1�2����
����� ��%-��3/1���.�� '�4�5��

���	��/1�rkmJ'}AK�hLv;kgà,ãu>?h[dnoaBQd�s

6�BÒ>?FCh å >?hLê å KEäAkg}AK8oaB�oAl�l$>?FCBQdr>Aç�o,JLFIlMlMK�JzJ^çìFCf¨kgBQdLK�äAhnoedLkg>ABÒ>aç�dL>G>Af�JLFCãCãO>AhLdLKiH
à�>UHUK�frpIoAJLK�HûHCK�JLkÏä?BîoaBuH�HUK�}AKMfg>AãIà�K�BQd�kgB?dz>!dz@CK*l$>Aà,ãIoABGvAs�èr@CK{JLFIl�l$K�JzJ�kgJ�HU>Ul$FUw
à�K�BQdLK�HöpGv�dL@CK*ç o?lÓd;dz@Ioed1dz@CKÉlM>Aà,ãIoaBGvûBI> å kmJ1kgBúdL@CK!ãIhL>Ul$KiJLJ,>Aç�oAHCoAãUdLkgBCäëdL@IK
ãChL>UlMK�HUFChzK�JØçì>?hrçìFUdLFChzK8J[>AçÌd å oAhLKEHUK�}AKMfg>AãIà�K�BQd�sUqæKpOKMfgkgKM}AKEdz@Ioed'>?BCKEêAKMv�kÏBCä?hLKiHUkgKMBQd
kÏB�oAln@CkgKM}GkgBCä'dzoAêAKMw�>e}?KMh�kmJ9dL>�ãIhL>e}GkmHUKØo�hLKioafgkgJ[dLkmlÕHUK�à,>ABIJ[dLhnoedzkÏ>?B
J[vUJ[dLK�à puoAJLK�H8>?B�dL@IK
ãChL>?pCfgKMà HU>?à;oakgBÉ>açØdL@CK;lM>Aà,ãIoaBGv?_ å @Ikgln@ækgJEhzK�lM>Aä?BCkÏâioapCfgK
pGv*dz@CK;HUKM}?KMfg>AãOKMhnJM_¨oABIH
à,oAêAK2kÏdØlM>Aà,ãCfgK$dLK å k�dz@1hzK�JLãuKilÓd#dz>
HU>Ul$FCà,K�B?dnoedzkÏ>?B�_adzK�J[dzJ�oaBIH å kÏdL@;dnoahzäAKMd#ãCfgoad[çì>?hLà
l$>UHUKEäAK�BCKMhnoedzkÏ>?B�s87ÕJLãuKil$kmoafgfÏv å @IKMhzKEHCKM}AK�fÏ>?ãuK�hzJ�@Io~}?KÛBI>�>?h'fÏkÏd[dzfÏK8KMéUãuK�hLkgKMBIlMKEkÏB{dL@IK
ý pUó^K�l$d[w ý hLkgKMBQdLKiH1à,K$dz@C>UH¨s

qòk�dz@
hzK�JLãuKilÓd�dL>2dz@CKrl$>ABul$hzK$dLKÕdL>G>Af�_ å K�BC>adzK#dz@Ioed�`'@IoAãIJ[>UHUv8HUkmH
oAfÏfg> å o�JLFIl�l$K�JzJ[w
çìFCfAkgBQdLKMä?hzoadLkg>AB�sMqÆK#K�BIl$>?FCBQdLK�hLKiHHCk�ñ1l$FIf�dzkÏKiJ�kgB8pCFCkgfgHUkgBCäo'l$hz>?JzJ^w�l$>?à�ãIkÏfgKMhOdL>G>?f�w�ln@IoakgB
çì>AhEøØvGä å kÏB�9eqòkÏBuHU> å JM_ å @CKMhzK�kgBQdLKMä?hzoadLkg>AB å kÏdL@É`2@IoaãIJL>UHUv å K�BQd�hzoadL@CK�hÛJLà,>Q>AdL@CfgvAs
:2> å KM}AK�h�_ å kÏdL@ëhLKiJ[ãOK�l$dEdL>*l$>?BUïIäAFIhzoadLkg>ABÉà;oABIoaä?KMà,KMBQd�_ å K,à,oABIoaä?K�H!dL>�kÏBQdzKMäAhnoedzK
pIoAJLkglEø<;>=;çìFCBIlÓdzkÏ>?BIoafgkÏd^v å k�dz@1dL@IKlM>ABUïIä?FChnoedLkg>AB;à,K�BQFÒkÏB{`'@IoAãIJ[>UHUv?_?pIFUdØdz@CKÛïIBIoaf
J[>?fÏFUdzkÏ>?B�kmJ�pIo?J[KiH
>?B
dz@CK'FIJzoaä?KØ>AçOqòkgBOø<;>=¨s�?�k@(¨j*KMhzäAK'ãChz>e}GkgHCK�J�oäAhnoaãC@CkmlMoAfGà�K�hLä?K
çìFCBIlÓdzkÏ>?BIoafgkÏd^vA_UpCFUd'pOK�l�oaFIJLKEk�d'kmJ'oaBÒoApIJL>AfgFUdLKà,KMhzäAKEoaBIH�dL@CKEà,KMhzäAKãChz>Ul$K�JzJ�lMoaB{pOK
}AKMhzv1dzK�HUkg>AFuJM_uk�dkgJ�BC>adhLKil$>Aà,à,KMBuHUK�HÒçì>AhHCoakgfgvÒFIJzoaä?KAsIèr@IK
ãCfmoakgBÆø<;>=�à,K�hLä?K8kgJÛo
çìK�oAJLkgpCfÏK�oAf�dzKMhzBIoedzkÏ}?KdL>;dz@CK$?Ûk%(¨j*KMhzäAKEdz>G>Af�_CpCFUd�kmJ�J[dLkgfgf¨dLhz>AFCpIfÏKiJ[>?à�KEdz>;FIJLK�HUFCK8dz>
dL@CKl$>Aà,ãCfgK$éUkÏd^v
>AçOdz@CK2dzK$éGd#çì>?hLà;oedØ>aç�J[>?à,K'à�>UHUK�fuK�fÏK�à,KMBQdzJ�s?èr@CK�fÏ>Ulnê
à,Kiln@IoaBCkmJLà{_
oafmJ[>1ãIhL>e}GkmHUK�H{kgBæø<;>=°_°l$>?à
pCkgBCKiH å k�dz@Éà,>UHUKMf9>Ahzä?oaBIkÏâioedLkg>AB*oABIH�ãChz>GlMK�JzJ2à;oaBuoaäAKMw
à�K�BQd�_¨kmJ�dz@CK;ln@C>?JLKMBæJ[>?fÏFCdLkg>AB�s¨èr@CkmJ8J[>?fÏFCdLkg>ABÆHC>QKiJfÏkgà,k�d�l$>?BIl$FIhLhzKMBQd8HUKM}?KMfg>AãCà,KMBQdi_
pCFUd2kmJrçì>AFCBuH�dz>,puKEdz@CK8puKMd[dzKMh�ln@C>?kglMKAs

152

Verification and Test of Critical Systems with

Patterns and Scenarios in UML

Matthias Sand

University of Erlangen-Nuremberg
Department of Computer Science 3

matthias.sand@informatik.uni-erlangen.de

1 Introduction

When dealing with complex developement tasks, numerous requirements have to
be met. Patterns and scenarios are a useful means to reflect both the functional
requirements imposed to a system under developement as well as standardized
general solutions to problems that arise from functional and non-functional re-
quirements. When combined with a reasonable common notation for scenarios
and the system model, it is possible to provide automated tools for the simu-
lation or verification of the model against the requirements. In the following,
the parts concerning the notational and formal aspects of such an approach,
targeting mainly at the scope of hardware near embedded systems, are briefly
described.

2 Approach

Due to its increasing popularity, great versatility and its focus on object oriented
developement, the Unified Modeling Language (UML) is used for modeling the
system as well as for the representation of its requirements and patterns. Pri-
marily for practical reasons we fall back upon elements from UML 1.X [OMG01].
For the representation of the model serves a restricted subset of the class and
state chart diagrams as well as possibly object diagrams. The static structure of
the system is specified by a number of active classes and their relationships (i.e.
associations) with each other. Each class must have a state chart diagram at-
tached, which describes the behavior of its instances. For flexibility, a big subset
of typical elements of the UML state charts is supported. Messages between in-
stances are sent in the course of actions associated to transitions or state entries
or exits. To this end, and for guarding expressions of transitions, an appropriate
textual language had to be introduced, which clarifies the UML syntax.

Patterns and requirements are formulated by parametrised collaborations.
Collaborations describe sets of objects, which interact with each other in order
to achieve a certain goal. Each member of a pattern corresponds to a role of
the collaboration. Roles can be associated to each other to provide the paths of
communication between them. The scenarios of the collaboration are described
using interaction diagrams, representing sequences of messages passed between

153

the roles. Patterns are typically laid out independently of concrete models and
are bound to the current design later, whereas those collaborations that directly
represent requirements imposed to the system under developement become part
of the model at a relatively early stage of development, as soon as they arise
in the progress of analysis and design. Binding patterns to the system model
is equivalent to the instanciation of parametrised collaborations using the UML
template mechanism.

The lack of a sufficiently formal semantics typical of the UML can be com-
pensated by defining a transformation to a notation that is already endowed with
one. In our case, a transformation to VHDL [IEE93] is proposed. This language
provides a clear semantics, a complete sequential programming language, a rich
set of data types, supports concurrency, instance-level hierarchy, and offers an
elementary concept for the separation of interface and implementation. The rules
of our mapping were particularly laid out in such a way that they reflect the
informal semantics described in the UML standard as closely as possible, espe-
cially for the behavioral parts of the model. Each class within the UML model is
mapped to a pair consisting of an ENTITY and an ARCHITECTURE. The EN-
TITY specifies the classes interface for communication, the ARCHITECTURE
consists of at least one subcomponent, which is derived by transformation from
the associated state chart and contains the actual logic of the class, realised by
complex sequential descriptions. To achieve the message semantics of the UML
state charts, a message buffer and a sequentialiser have to be added to the classes
ARCHITECTURE in most of the cases. The default strategies of these infra-
structural parts – FIFO and round robin – can easily be modified by providing
different implementations for their respective ARCHITECTURE.

For simulation purposes it is possible to automatically generate a test bench
based on the directed acyclic graph of send and receive events that are derived
from an interaction connected to the respective collaboration. As an additional
approach it is currently considered to formally verify a system model against its
scenarios using model checking techniques.

3 Ongoing and Future Work

Based on this technical toolkit, a set of stereotypes has already been elaborated
and is more and more extended, addressing the needs of scenario-based test
and verification in the scope of the developement of embedded systems. These
restrictions and extendsions to the UML metamodel are to be collected to form
a UML profile, which is to be complemented by methodical guidance for its
deployment in the design process.

References

[IEE93] IEEE Standard VHDL Language Reference Manual. New York, NY, 1993.
[OMG01] Unified Modeling Language Specification 1.4. Technical report, The Object

Management Group, 2001.

154

155

156

2:m'

1:m

O1 O2 O3

Figure 1. An UML SD

A Semantics of UML Sequence Diagrams Based on

Causality between Actions

O. Tahir, C. Sibertin-Blanc, J. Cardoso

Université Toulouse 1 / IRIT

21 allée de Brienne F-31042 Toulouse cedex

{otahir, sibertin, jcardoso}@univ-tlse1.fr

The unified modeling language (UML) is widely used to describe the behavior of systems. It

provides a suitable framework for requirements elicitation by means of Use Case diagrams and

Interaction diagrams (Sequence diagram, Collaboration diagram or Communication diagram), and

for behavioral specification by means of Statechart (State-Transition diagrams) as an abstract

executable specification of their behavior.

Unfortunately, UML lacks a formal semantics and does not offer semantic relationships

between the diagrams of dynamics. In particular, Sequence Diagrams do not have an operational

semantics describing formally how to execute such diagrams. Therefore, it is not possible to apply

formal techniques for deriving Statecharts from Sequence Diagrams (SD). This lack has attracted

the attention of researchers interested in automatically deriving the behavior of the components of

a system from their interactions. To reach this goal, this article proposes a new semantics for the

UML sequence diagrams based on a relation of causality between the actions of emission and

reception of messages.

Indeed, the definition of SD in UML deals only with the scheduling of messages and does not

say anything about the scheduling of the actions of sending (!m) and receiving (?m) a message m.

While the scheduling of the actions of sending and receiving messages is unambiguous in the case

of a procedural SD including a single focus of control (only one

object is active at the same time), it is not obvious in the context of

distributed systems including several objects simultaneously active.

For instance, the SD depicted in figure 1 says that message m

precedes message m', but it does not say e.g. whether the receiving

action ?m is to be performed before the sending action !m'. The

object O3 does not have enough information to known at which

time it must emit the message m'.

To provide SDs with an operational semantics, we propose to define a partial order relation

among the actions of sending and receiving messages. This semantics is based on the abstract

syntax of Interaction diagrams, i.e. on their definition in term of the metamodel of UML [1]. Any

scheduling of actions must take into account the fact that a message has to be sent before it is

received, thus we always have for any message m: !m before ?m.

There are several semantics – or ways to schedule the sending and receiving actions. It is not

easy to give an exhaustive synthesis. Mainly, there are two kinds of semantics.

The first one consists in to read a SD as a Message Sequence Chart (MSC) [2], that is to ignore

the global ordering of messages and to just consider the total ordering of the actions along the life-

line of each object. According to this definition, we just have for the SD of Figure 1: ?m before

?m' in addition to !m before ?m and !m' before ?m' .

A second way to schedule the actions is defined and studied in a detailed way in [3, 4]. This

semantics is mainly based on the scheduling of messages. It considers that whenever a message m

precedes a message m’, m must exist before m’ and thus we have: !m before !m'. In particular, the

operational semantics proposed by [3] imposes a total serialization on the emission and reception

actions of successive messages sent by different objects. According to this definition, we have an

additional constraint for the SD of Figure 1: !m before !m'.

157

In this paper, we introduce a third way to schedule the actions of a SD, based on the causality

relationship between the actions. This semantics is particularly relevant in the context of reactive

systems where two actions a1 and a2 are serialized only if a1 causes a2 in some way. According to

this approach, we just have for the SD of Figure 1: !m before ?m and !m' before ?m'. Indeed,

there is nothing that enables to relate !m performed by O1 and !m' performed by O3, and as a

result there is no reason to assert that the reception ?m of m by O2 is the cause of the reception ?m'

of m’. The main property of this new scheduling of actions is that it orders two actions only if

there is a necessity reason for that.

Beyond the obvious clause: "a message can be received only if it were sent previously", we

briefly describe the three rules of the causality notion :

i) the sending of a message is caused by the reception of the precedent message and thus it is to

be postponed after the reception of all these precedent messages. The intuition under this rule is

that the reception of a message is a call for a reaction that is achieved by sending a message;

ii) if two directly successive messages are sent by the same object, then their respective

emission actions must be ordered. But if they are emitted by two different objects, the emission

actions are independent and thus are not ordered. Thus, this operational semantics does not impose

a systematic serialization on the emissions and receptions of successive messages sent by different

objects;

iii) in the particular case where two messages sent by the same object O are addressed to the

same object O', they are received by O' in the very same order as they were sent by O, to take into

account the intention of the sender's ordering.

There is a family of SDs known as locally controllable [3]: a SD is locally controllable iff for

two directly consecutive messages, either they are sent by the same object or the second message

is sent by the recipient of the first one. A locally controllable SD includes a single thread of control

and each object has enough information to know when a send action must be performed, so that

the global ordering of actions can be ensured by the local controls within each object.

The semantics described in [3] is strongly related to the UML definition of SD. When it is

applied to a SD, if the resulting global ordering reveals the addition of synchronizations, it means

that the SD is not locally controllable. In this case, this ordering does not make sense because it

needs either a centralized controller that activates each object when it has to perform a send action

or the addition of a synchronization message.

The other semantics, the MCS-like and the causality-based ones, are relevant for any SD

(locally controllable or not). In fact, the causality-based semantics is a subset of the MSC-like

semantics; it includes an ordering constraint between two actions only if there is really some

functional necessity for that. Thus, defining the semantics of a SD according to the causality-based

semantics proposed in this paper results in a distributed system having a more robust behaviour,

because it has to satisfy a smaller number of synchronisation constraints.

References

[1] OMG Unified Modeling Language Specification : version 1.5 Mars 2003.

http://www.omg.org/.
[2] ITU-T recommendation Z.120. Message Sequence Charts, May 1996, ITU Telecommunication

Standardization Sector.

[3] J. Cardoso, C. Sibertin Blanc. "An operational semantics for UML interaction: sequencing of

actions and local control." European Journal of Automatised Systems, APII-JESA 36, p 1015-

1028, ISBN 2-7462-0573-4, Hermès-Lavoisier, 2002.

[4] Alexander Knapp. "A Formal Semantics for UML Interactions". In Proc. 2nd Int. Conf. on the

Unified Modelling Language UML’99. October 28-30, 1999 Fort Collins, Colorado, USA.

LNCS 1723, pp. 116-130, Springer 1999.

158

