
MontiCore: A Framework for the Development of Textual
Domain Specific Languages

Hans Grönniger Holger Krahn

Bernhard Rumpe Martin Schindler
Software Systems Engineering
TU Braunschweig, Germany

Steven Völkel

ABSTRACT
In this paper we demonstrate a framework for efficient devel-
opment of textual domain specific languages and supporting
tools. We use a redundance-free and compact definition of
a readable concrete syntax and a comprehensible abstract
syntax as both representations significantly overlap in their
structure. To further improve the usability of the abstract
syntax this definition format integrates additional concepts
like associations and inheritance into the well-understood
grammar-based approach. Modularity concepts like lan-
guage inheritance and embedding are used to simplify the
development of languages based on already existing ones. In
addition, the generation of editors and a template approach
for code generation is explained.

1. INTRODUCTION
General purpose programming languages (GPLs) allow

developers to create software systems efficiently. However,
there is often a conceptual gap between the problem domain
of an application and the used programming languages since
GPLs typically do not contain domain abstractions. Domain
specific languages (DSLs) provide a way to close this gap by
enabling domain experts to describe a solution using famil-
iar concepts and e.g., automatically map this description
to an executable form. Experiments and case studies indi-
cate that for certain domains major improvements can be
achieved (see, e.g., [9]). Especially the evolution of systems
with frequently changing requirements is easier, as DSLs are
usually more concise and therefore smaller artifacts have to
be adapted. In addition, DSLs allow a clear separation be-
tween the conceptual solution which is described with DSL
code and technical aspects that are added by the code gen-
erator.

The MontiCore framework [6] can be used for agile de-
velopment of simple as well as more complex textual DSLs.
It uses a grammar-based language definition which is ex-
tended by several concepts to express associations, compo-
sitions, and inheritance directly in the language definition
itself. Despite this concise language definition, the Monti-
Core framework supports the creation of a domain specific
code generators by providing well-tested and practically ap-
proved solutions for re-occurring tasks.

Copyright is held by the author/owner(s).
ICSE’08, May 10–18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

2. LANGUAGE DEFINITION
MontiCore uses a single source for defining concrete as

well as abstract syntax of a DSL. The abstract syntax de-
rived from a grammar in a first step provides a tree. For an
efficient navigation, derivation of typing information etc., we
allow to specify additional associations, compositions and
inheritance directly in the language definition. Tool sup-
port helps to automatically establish respectively calculate
the links between the objects involved in an association.
A MontiCore language definition is mapped to an object-
oriented programming language where each nonterminal is
mapped to a class with strongly typed attributes induced
by the defining production. A parser is generated to create
instances of the abstract syntax from a textual representa-
tion.

Figure 1 shows a grammar and the abstract syntax for
finite automata, where an automaton starts with the key-
word automaton and consists of an unbounded number of
states and transitions. States can be initial or final and
transition are activated by an input which leads to a state
change. Each production is mapped to a class in the abstract
syntax, each non-terminal is mapped to a composition rela-
tionship whereas references to terminals are implemented as
attributes. In line 16-19 additional associations are added,
whereas in lines 21-24 the concept simplereference is used
to describe which instances are linked to each other. A more
detailed description of the mapping can be found in [5].

Grammar inheritance as provided by MontiCore allows
deriving new language variants from an existing language
definition by specifying the delta only. The productions are
added to the super-grammar and are used for parsing ac-
cordingly.

The concept of language embedding is realized by mark-
ing non-teminals as external. These external non-terminals
(also called holes) can be filled by other grammars. There-
fore, existing language fragments can be combined and re-
used in different settings. One main feature of MontiCore is
that the fragments can be compiled independently and com-
bined in compiled form. The advantage of this approach
is that the fragments can be defined without knowledge
about a concrete fragment combination. Furthermore, pos-
sible ambiguities are analyzed while designing the fragments
and are therefore avoided at combination time. In addition
the fragments can be deployed as compiled byte code which
serves as a mechanism to protect the intellectual property
of designing a parser.



MontiCore-Grammar

1 grammar Automaton {
2

3 Automaton =
4 "automaton" name:IDENT
5 "{" (State | Transition)* "}";
6

7 State =
8 "state" name:IDENT
9 (("<<" initial:["initial"] ">>" ) |

10 ("<<" final:["final"] ">>" ))* ";";
11

12 Transition =
13 from:IDENT "-" activate:IDENT ">"
14 to:IDENT ";";
15

16 associations {
17 Transition.toState * <-> 1 State.ingoing;
18 Transition.fromState * <-> 1 State.outgoing;
19 }
20

21 concept simplereference {
22 toState: Transition.to -> State.name;
23 fromState: Transition.from -> State.name;
24 }

Figure 1: Grammar and abstract syntax

3. EDITOR AND CODE GENERATION
The editor environment for a newly defined language is

a far too often neglected labor intensive task that does not
directly contribute to the project, but only helps the devel-
opers to become more efficient later on. Therefore, a com-
fortable editor is an important success factor for a DSL if
a new, and for other developers unknown DSL has to com-
pete with a general purpose language like Java. For GPLs
the existing tools are usually mature and support the user
with a sophisticated user interface. DSLs therefore must be
supplemented by a similar development environment.

We have chosen the Eclipse platform as a target for ed-
itor generation. The platform supports the user by a full-
functional Java-IDE including among others an incremental
compiler and the user is supported by various build and
version management tools which are essential for efficient
software development. A more detailed description can be
found in [4].

The development of domain specific model analyzers and
code generators is necessary to make a DSL useful. A code
generator uses well-formed instances of the language that
conform to the abstract syntax and context conditions and
transforms them to executable code. MontiCore does not re-
strict the user to a certain form of code generation, as both
a template engine or a visitor-base methods can be used.
The development is supported by standard means to create

files, process error messages, loading of related models, and
structuring the processing by workflows which allows a de-
veloper to focus on the essentials of the generation process
and rely on well-tested and practically approved solutions.
In addition, MontiCore offers a template engine that sup-
ports template refactoring by a standard Java refactoring
engine [3]. This simplifies the co-evolution of templates and
runtime environment and therefore enables agile develop-
ment of DSLs.

4. APPLICATIONS
MontiCore has been used for a number of applications for

research and teaching purposes within the Institute for Soft-
ware Systems Engineering. It allows the agile development
of languages and simplifies experimental language design by
not requiring additional libraries like EMF-based tools do.

The following list shows an excerpt of the realized projects.

• Autosar[1] is a component-based approach for model-
ing and implementing automotive software. In [2] it is
shown how Autosar XSD files can be semi-automatically
converted to a MontiCore grammar in order to describe
the component interface directly next to the C-source
code without the use of extra tools.

• A Java 5.0 compatible grammar is developed with the
MontiCore framework and is commonly used as an ac-
tion language for models.

• A subset of the UML [8, 7] which can be used as a
programming language is described as a DSL in order
to realize an UML tool supporting agile model-based
development.

• The MontiCore framework is developed using its own
infrastructure in a bootstrapping process.

5. REFERENCES
[1] Autosar website http://www.autosar.org.

[2] F. Höwing. Effiziente Entwicklung von
AUTOSAR-Komponenten mit domänenspezifischen
Programmiersprachen. In Proceedings of 5th Workshop
Automotive Software Engineering, Bremen, Germany,
September 2007 (LNI P-110), 2007.

[3] H. Krahn and B. Rumpe. Techniques For Lightweight
Generator Refactoring. In Proceedings of Summer
School on GTTSE (LNCS 4143). Springer, 2006.

[4] H. Krahn, B. Rumpe, and S. Völkel. Efficient Editor
Generation for Compositional DSLs in Eclipse. In
Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling 2007, 2007.

[5] H. Krahn, B. Rumpe, and S. Völkel. Integrated
Definition of Abstract and Concrete Syntax for Textual
Languages. In Proceedings of Models 2007, 2007.

[6] MontiCore Website http://www.monticore.de.

[7] B. Rumpe. Agile Modellierung mit UML :
Codegenerierung, Testfälle, Refactoring. Springer,
Berlin, August 2004.

[8] B. Rumpe. Modellierung mit UML. Springer, Berlin,
May 2004.

[9] D. Wile. Lessons learned from real DSL experiments.
Science of Computer Programming, 51(3):265–290,
June 2004.


