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Abstract. This paper presents an overview of the veri�cation framework ALICE in
its current version 0.7. It is based on the generic theorem prover Isabelle [Pau03a].
Within ALICE a software or hardware component is speci�ed as a state-full black-box
with directed communication channels. Components send and receive asynchronous
messages via these channels. The behavior of a component is generally described as
a relation on the observations in form of streams of messages �owing over its input
and output channels. Untimed and timed as well as state-based, recursive, relational,
equational, assumption/guarantee, and functional styles of speci�cation are supported.
Hence, ALICE is well suited for the formalization and veri�cation of distributed systems
modeled with this stream-processing paradigm.

1 Introduction

1.1 Motivation

As software-based systems take ever more and more responsibility in this world,
correctness and validity of a software-based system is increasingly important.
As the complexity of such systems is also steadily increasing, it becomes ever
more complicated to ensure correctness. This especially concerns the area of dis-
tributed systems like bus systems in transportation vehicles, operating systems,
telecommunication networks or business systems on the Internet. Expenses for
veri�cation are an order of magnitude higher than the expenses of the software
testing up to now. This, on the one hand, will not change easily in the short
run but it will also become evident that crucial parts of software need a di�er-
ent handling than less critical ones. So veri�cation will go along with testing
in the future. Full veri�cation, however, will at least be used for critical proto-
cols and components. To reduce veri�cation expenses, a lot has been achieved
in the area of theorem provers, like Isabelle [Pau03a, Pau03b, NPW02], in the
last years. Based on these foundational works and on the increasing demand for
powerful domain speci�c theories for such theorem provers, we have decided to
realize ALICE as a stream-processing-oriented, formal framework for distributed,
asynchronously communicating systems.



ALICE is a still growing framework within Isabelle for the veri�cation of logi-
cally or physically distributed, interactive systems, where the concept of commu-
nication or message exchange plays a central role. An interactive system (see also
[BS01] for a characterization) consists of a number of components with precisely
de�ned interfaces. An interactive component interacts with its environment via
asynchronous message sending and receiving over directed and typed communi-
cation channels. Each channel incorporates an implicit, unbounded bu�er that
decouples the sending and arrival of messages, and thus describing asynchronous
communication. In timed channels, we can control how long these messages re-
main in this implicit bu�er. Fig. 1 illustrates the graphical notation for the
syntactical interface of a simple interactive component with one input and one
output channel.

<Name>
<Name> : <Type> <Name> : <Type>

Fig. 1. Illustration of an interactive component as a black-box

In ALICEmessage �ow over channels is modeled by possibly in�nite sequences
of messages called streams. Such a stream represents the observation of what
happens on a channel over time. Since in�nite sequences are also included, the
liveness and fairness properties of systems can also be dealt with. ALICE provides
type constructors astream for building (untimed) streams and tastream for
timed streams over arbitrary types.

As an advanced veri�cation framework, ALICE will o�er precisely formalized
and comfortably usable concepts based on an underlying logic language called
HOL [NPW02] as available in Isabelle. Using a well explored and rather ex-
pressive logic language allows us to build on an elaborated set of veri�cation
techniques for ALICE.

ALICE will provide support for a number of techniques to specify a compo-
nent. A speci�cation can be a relation between input and output streams, a
stream-processing function, a mapping of input to output, or a set of stream-
processing functions allowing to describe non-determinism and underspeci�ca-
tion. All variants can be timed or untimed. Further support will be given to map
between these styles, allowing to choose appropriate speci�cation techniques for
each problem and integrating those later.

Although ALICE does already provide some of these features in its current
version, this workshop paper also reports on work still to be done (for the pre-
vious version see [GR06]). In a future version ALICE will provide the following:

� A veri�cation framework based on Isabelle supporting development methods
for real time, distributed, asynchronously communicating and object oriented
systems, respectively. This supports e.g. the development methodologies of
[Rum96] and Focus [BS01].



� A formal semantics framework for various languages based on
stream-processing, e.g. UML's composite structure diagrams that will be
formalized based on streams [BCR06, BCR07a, BCR07b].

� A sophisticated veri�cation tool for distributed, interactive systems or, at
least, their communication protocols based on stream-processing (see [Ste97]
for a survey of stream-processing).

In the following we give a compact overview of Isabelle's HOL and HOLCF
that acts as a reminder for experts of the �eld. An introduction can be found in
[NPW02, Reg94] before we start describing features of ALICE in Section 2 and
demonstrating the use of ALICE in Section 3 on the Alternating Bit Protocol.
Section 4 concludes the paper with a discussion.

1.2 HOL

Isabelle is a generic theorem prover, hence, it can be instantiated with object
logics and appropriate proof tactics. Isabelle/HOL [NPW02], in short HOL, is
such an elaborated higher order logic, dealing amongst others with sets, relations,
total functions, natural numbers, and induction.

HOL provides a term syntax close to mathematical syntax and constructs
from functional languages. It also provides basic types like bool or nat. For
building sets over arbitrary types, HOL provides the type constructor set. Func-
tion types are built with the in�x type constructor⇒ for total functions. To build
more complex types, the mentioned, and a number of additional basic types and
type constructors are provided.

HOL inherits the type system of Isabelle's metalogic including its automatic
type inference for variables. There are two kinds of implication: the implication
on the level of object logic, in this case HOL, symbolized by −→, and the symbol
=⇒ for Isabelle's inference. Analogously, there is an object logics symbol for the
equality, in this case =, and the metalogics symbol≡ for the de�nitional equality.

In Isabelle assumptions of an inference rule are enclosed in [ ] and separated
by ;. The metalogics universal quanti�er is symbolized by

∧
.

1.3 HOLCF

Isabelle/HOLCF [Reg94, MNvOS99], shortly HOLCF, is a conservative exten-
sion of HOL with domain theoretical concepts, such as chains, continuity, ad-
missibility, �xpoint recursion and induction, as well as some basic types and
datatypes e.g. for lazy lists.

HOLCF extends HOL with the central type class pcpo for �pointed complete
partial orders�. Any type that is a member of this type class features a special
relation symbol v for a partial order on its elements, the least element sym-
bolized by ⊥, and the existence of the least upper bound for any chain of its
elements with respect to v.



This extension is carried out in layers of theories, beginning with the de�ni-
tion of type class po for partial orders. po is extended to type class cpo, where
the existence of the least upper bound for any chain, symbolized by

⊔
i. Y i,

is introduced. Here, Y is a chain of growing elements and i the index over nat-
ural numbers. Based on these theories, monotonicity and continuity for HOL
functions on cpo types is formalized.

Type class pcpo �nally introduces the existence of the least element in
its members. We call the members of this class HOLCF types. Subsequently,
HOLCF provides the new in�x type constructor → for the construction of con-
tinuous functions on HOLCF types. Analogously to the HOLCF types, we call
these functions HOLCF functions or operations. These functions, by de�nition,
exhibit the advantages of continuous functions, such as composability, imple-
mentability etc. A lambda-abstraction, denoted by Λ (not to confuse with HOL's
λ) and a corresponding function application, using the symbol · (opposite to
HOL's white space) is provided accordingly.

Subsequently, the �xpoint theory Fix mainly implements a continuous �x-
point operator, symbolized by fix, and the �xpoint induction principle. Hence,
with →, fix, and HOLCF datatypes a complete HOLCF syntax for de�ning
and reasoning about HOLCF functions and types is provided, which is separate
from HOL's function space. As an advantage, by construction, HOLCF function
abstraction and application remains in the HOLCF world.

1.4 Related Work

A good outline on di�erent approaches to formalize possibly in�nite sequences
in theorem provers like Isabelle or PVS, as well as a detailed comparison can
be found in [DGM97, Mül98]. In contrast to a HOLCF formalization given in
[Mül98], where �nite, partial, and in�nite sequences are de�ned to model traces
of I/O-Automata, our streams have been developed using only partial sequences
and their in�nite completions, which are more appropriate for modeling inter-
active systems as these are generally non-terminating. A pure HOL approach
based on coinduction and corecursion is described in [Pau97].

Another approach is the formal speci�cation language ANDL introduced
in [SS95]. ANDL is a formalization of a subset of Focus with an untimed
syntax and a �xed and an untimed semantics. Currently, ANDL does not provide
an appropriate veri�cation infrastructure or extended sophisticated de�nition
principles, but it is HOLCF oriented. In [SM97] ANDL is used as interface for
an A/C re�nement calculus for Focus in HOLCF. In [Hin98] ANDL is extended
to deal with time.

A recent work in this area is [Spi06], where a pure HOL approach to formalize
timed Focus streams is used. By this approach (see also [DGM97, Mül98]), an
in�nite stream is represented by a higher-order function from natural numbers



to a set of messages. Furthermore a time-driven approach, as it will brie�y be
mentioned in Section 2.4, has been chosen there.

Apart from our idea of building such a logical framework, the realization of
ALICE is based on a rudimentary formalization of Focus streams in HOLCF,
developed by D. von Oheimb, F. Regensburger, and B. Gajanovic (the ses-
sion HOLCF/FOCUS in Isabelle's release Isabelle2005), a concise depiction of
HOLCF in [MNvOS99], as well as on the conclusions from [DGM97, SM97]. It
is elaborately explained in [GR06]. Additionally, it is worth mentioning that, in
the current version HOL's construct typedef has been used to de�ne astream.

2 ALICE

The newly de�ned logic ALICE includes the following parts:

� HOL - the full HOL de�nitions.
� HOL/HOLCF - all theories from HOLCF, like Pcpo, Cont, etc. that are used

on the �interface� between HOL and HOLCF (as discussed in Section 1.3).
� HOLCF - using HOLCF application/abstraction (LCF sublanguage) only.
� ALICE - basic type constructors astream and tastream, as well as recursion,

pattern-matching, automata, etc.
� ALICE - lemmas provided by ALICE theories (they are generally partitioned

in timed and untimed properties).

Please note that, for the development of ALICE, we use a combination of
HOL and HOLCF syntax, but the user of ALICE does not need to. This is due
to the fact that we internally use HOLCF to build up necessary types, operators,
and proving techniques, but will encapsulate these as much as possible.

2.1 Basic Features of ALICE

To understand ALICE in more detail, we �rst summarize its basic features. ALICE
provides:

� polymorphic type constructors astream and tastream for timed and untimed
streams over arbitrary HOL types,

� sophisticated de�nition principles for streams and functions over streams,
such as pattern-matching, recursion, and state-based de�nition techniques,

� incorporated domain theory (concepts of approximation and recursion),
� various proof principles for streams,
� incorporated automata constructs for state-based modeling, also supporting

underspeci�cation or non-determinism,
� extensive theories for handling timed streams, functions and properties,
� a powerful simpli�er (while developing ALICE, a proper set of simpli�cation

rules has been de�ned carefully in such a way as to be used by ALICE auto-
matically), and



� an extensive library of functions on streams and theorems, as well as com-
monly needed types (just like in any other programming language, a good
infrastructure makes a language user friendly).

The following sections provide brief insights in the above listed features. For
a deeper understanding we refer to [GR06].

2.2 Specifying Streams

ALICE provides a basic type constructor called astream for specifying untimed
streams. For any Isabelle type t, the type t astream is member of the HOLCF
type class pcpo as described in Section 1.3. The following exhaustion rule de-
scribes the basic structure of untimed streams as well as the fundamental oper-
ators for their construction:V
s. s = ε ∨ (∃ h rs. s = <h>_rs)

A stream s is either empty, symbolized by ε, or there is a �rst message h and
a remaining stream rs so that pre-pending h to rs yields the stream s. The
operator <.> builds single element streams and ._. de�nes the concatenation
on streams. It is associative and continuous in its second argument and has the
empty stream (ε) as a neutral element. If the �rst argument of concatenation is
in�nite, the second is irrelevant and the �rst is also the result of the concatena-
tion. This e�ectively means that the messages of the second stream then never
appear in the observation at all.

According to the above rules, ALICE also o�ers selection functions, named
aft for the head and art for the rest of a stream, respectively. Function atake

allows us to select the �rst n symbols from a stream. Function adrop acts as
a counterpart of atake as it drops the �rst n messages from the beginning of
a stream s. The operator anth yields for a number n and a stream s, the n-th
message. Beyond that, ALICE provides many other auxiliary functions, e.g. #
for the length of a stream, yielding ∞ for in�nite streams, aflatten for the
�attening of streams of streams, aipower for the in�nite repetition, afilter for
message �ltering. In Section 2.5 we give a tabular review of operators that are
available in the current version of ALICE.

Since streams are HOLCF datatypes, they carry a partial order (see also
Section 1.3), which is described by the following lemma

s1 v s2 =⇒ ∃ t. s1_t = s2

The above rule characterizes the pre�x ordering on streams. It is induced by a
�at order on the messages, disregarding any internal structure of the messages
themselves. Based on these operators, a larger number of lemmas is provided to
deal with stream speci�cations, like case analysis, unfolding rules, composition
rules, associativity, injectivity, and idempotency. Some foundational lemmas are
given in Tab. 1.



Table 1. Some foundational lemmas on stream concatenation

ε _s = s_ε = s

(s_t)_u = s_(t_u)

#ε = 0

#<m> = 1

#(s_t) = #s + #t

#s = ∞ =⇒ s_t = s

2.3 Timed Streams

Built on the untimed case, ALICE provides another type constructor called
tastream for specifying timed streams. Structurally, both are rather similar.
Again, for any Isabelle type t, the type t tastream is a member of pcpo. The
following exhaustion rule describes the basic structure of timed streams. It shows
that timed streams may still be empty, contain a message or a tick as their �rst
element:V
ts. ts = ε ∨ (∃ z. ts = <

√
>_z) ∨ (∃ m z. ts = <Msg m>_z)

In addition to ordinary messages, we use a special message
√
, called the tick, to

model time progress. Each
√

stands for the end of a time frame. To di�erentiate
between the tick and ordinary messages, we use the constructor Msg as shown
above. This operator is introduced by type constructor addTick that extends
any type with the tick.

Please note that any timed stream of type t tastream is also an ordinary
stream of type (t addTick) astream. Therefore, all machinery for astream

types is available.
In addition, ALICE provides a timed take function. ttake n ·s yields at most

n time frames from the beginning of a timed stream s.
To allow inductive de�nitions, tastream streams may be empty. However,

for speci�cations we restrict ourselves to observations over in�nite time, which
means that we will only use the subset of timed streams with in�nitely many
ticks. Therefore, additional machinery is necessary to deal with those. For exam-
ple, the predicate timeComplete is provided to check whether a stream contains
in�nitely many time frames.

For an integration of both stream classes, operator timeAbs maps a timed
stream into an untimed one, just keeping the messages, but removing any time
information.

2.4 Stream Based Proof Principles

Having the necessary types and type classes as well as auxiliary functions and
lemmas at hand, we can introduce proof principles for streams now. At �rst, we
handle the untimed case, as the timed case can be built on that.



Proof Principles for Untimed Streams. A rather fundamental proof prin-
ciple for untimed streams is the so called take-lemma for streams that gives us
an inductive technique for proving equality

(∀ n. atake n ·x = atake n ·y) =⇒ x = y

Two streams are equal if all �nite pre�xes of the same length of the streams
are equal. More sophisticated proof principles, like pointwise comparison of two
streams using the operator anth or the below given induction principles are
built on the take-lemma. The following is an induction principle for proving a
property P over �nite (indicated by the constructor Fin) streams

[[#x = Fin n; P ε;
V
a s. P s =⇒ P (<a>_s) ]] =⇒ P x

As said, when necessary, we base our proof principles directly on HOLCF but try
to avoid their extensive exposure. Here is a principle that uses admissibility from
HOLCF (adm) for predicates to span validity to in�nite streams (see [Reg94])

[[adm P; P ε;
V
a s. P s =⇒ P (<a>_s) ]] =⇒ P x

The above induction principles have also been extended to the general use of
concatenation, where not only single element streams, but arbitrary streams can
be concatenated.

The concept of approximation (provided by HOLCF) and induction on natu-
ral numbers can also be used to prove properties involving continuous functions
over streams as discussed in Section 2.5.

Proof Principles for Timed Streams. Since timed streams can also be seen
as normal untimed streams, the above given proof principles can also be used to
prove properties of timed streams.

Please note that we have taken a message driven approach to inductively
de�ne timed streams. Messages are added individually to extend a stream. This
also leads to event driven speci�cation techniques. In the contrary, it would
have been possible to model timed streams inductively as a stream (t list)

astream, where each list denotes the �nite list of messages of type t occurring in
one time frame. This de�nition would lead to time-driven speci�cation principles.
It is up to further investigation to understand and integrate both approaches.
As a �rst step in this direction, ALICE provides a timed-take-lemma for timed
streams arguing that streams are equal if they are within �rst n time frames for
each n, as given in the following.

(∀ n. ttake n ·x = ttake n ·y) =⇒ x = y

Analogously, the following proof principle is based on time frame comparison

(∀ n. tframe n ·x = tframe n ·y) =⇒ x = y

ALICE provides more sophisticated proof principles for timed streams, but also
for special cases of timed streams, such as time-synchronous streams, containing
exactly one message per time unit, and the already mentioned time complete
streams, containing in�nitely many time frames.



2.5 Recursive Functions on Streams

Specifying streams allows us to de�ne observations on communication channels.
However, ALICE focusses on speci�cation of components communicating over
those channels. The behavior of a component is generally modeled as function
over streams and is often de�ned recursively or even state-based.

A recursively de�ned function f processes a pre�x of its input stream s by
producing a piece of the output stream and continues to process the remaining
part of s recursively. All functions de�ned in this speci�cation style are per
construction correct behaviors for distributed components. This makes such a
speci�cation style rather helpful. Functions of this kind are de�ned in their
simplest form as illustrated in the following (using the function out to process
the message x appropriately)

f (<x>_s) = (out x)_(f s)

By construction, these functions are monotonic and continuous (lub-preserving,
see below) wrt. their inputs, which allows us to de�ne a number of proof prin-
ciples on functions.

Table 2. Basic operators in ALICE

Operator Signature

<.> 'a ⇒ 'a astream

aft 'a astream ⇒ 'a

art 'a astream → 'a astream

atake nat ⇒ 'a astream → 'a astream

adrop nat ⇒ 'a astream → 'a astream

anth nat ⇒ 'a astream ⇒ 'a

#. 'a astream → inat

._. 'a astream ⇒ 'a astream → 'a astream

aipower 'a astream ⇒ 'a astream

apro1 ('a * 'b) astream → 'a astream

apro2 ('a * 'b) astream → 'b astream

amap ('a ⇒ 'b) ⇒ 'a astream → 'b astream

azip 'a astream → 'b astream → ('a * 'b) astream

afilter 'a set ⇒ 'a astream → 'a astream

atakew ('a ⇒ bool) ⇒ 'a astream → 'a astream

adropw ('a ⇒ bool) ⇒ 'a astream → 'a astream

aremstutter 'a astream → 'a astream

aflatten 'a astream astream → 'a astream

ascanl nat ⇒ ('a ⇒ 'b ⇒ 'a) ⇒ 'a ⇒ 'b astream → 'a astream

aiterate ('a ⇒ 'a) ⇒ 'a ⇒ 'a astream

A number of prede�ned auxiliary operators assist in specifying components.
Due to expressiveness, we also allow to use operators that are not monotonic or
continuous in some arguments, such as _ in its �rst argument or aipower. In
ALICE, it is also possible to de�ne more such functions using pattern-matching
and recursion. The above notions can also be found in standard literature on
semantics like [Win93]. In the following we concentrate on continuous functions.



Continuous Functions - The Approximation Principle. As brie�y dis-
cussed, continuous functions capture the notion of computability in interactive
systems and therefore play a prominent role in stream-processing speci�cation
techniques. The behavior of a continuous function for an in�nite input can be
predicted by the behavior for the �nite parts of the input. Thus, its behavior can
be approximated. As it has been shown amongst others in [Win93], composition
of continuous functions results in continuous functions. Therefore, based on a
number of basic functions and equipped with appropriate de�nition techniques,
it becomes easy to specify further functions. ALICE provides amongst others

� pattern-matching and recursion (like in functional languages),
� state-based de�nitions (using I/O∗-automata [Rum96], see Section 2.6),
� �xpoint recursion (using HOLCF), and
� continuous function-chain construction (using HOL's primrec and approxi-

mation, see [GR06])

Currently, we do have at least the operators on streams depicted in Tab. 2 and
Tab. 3 available. For the sake of brevity, we do not explain those further, but
refer to [GR06] as well as Section 2.2 and 2.3 and furthermore assume that
readers will recognize the functionality through name and signature.

Table 3. Basic operators for timed speci�cations

Operator Signature

timeComplete 'a tastream ⇒ bool

timeSync 'a tastream ⇒ bool

injectTicks nat astream → 'a astream → 'a tastream

timeAbs 'a tastream → 'a astream

ttake nat ⇒ 'a tastream → 'a tastream

tframe nat ⇒ 'a tastream → 'a astream

stretchTimeFrame nat ⇒ 'a tastream → 'a tastream

getTime nat ⇒ 'a tastream ⇒ nat

2.6 State-Based De�nition Techniques

There is quite a number of variants of state machines available that allow for
a state-based description. We use I/O∗-automata that do have transitions with
one occurring message (event) as input and a sequence of messages (events) as
output (hence I/O∗). They have been de�ned in [Rum96] together with a formal
semantics based on streams and a number of re�nement techniques. In contrast
to I/O automata [LT89], they couple incoming event and reaction and need no
intermediate states.

As they are perfectly suited for a state-based description of component be-
havior, we provide assistance for the de�nition of an I/O∗-automaton A in ALICE

by modeling the abstract syntax as a 5-tuple in form of

A = (stateSet A, inCharSet A, outCharSet A, delta A, initSet A)



Automata of this structure can be de�ned using the type constructor ioa. I/O∗-
automata consist of types for its states, input and output messages. delta de-
notes the transition relation of an automaton. It consists of tuples of source
state, input message, destination state and a sequence of output messages. The
5th element initSet describes start states and possible initial output (that is
not a reaction to any incoming message).

As an illustration, we de�ne1 an I/O∗-automaton representing a component
dealing with auctions in the American style, where bidders spontaneously and
repeatedly spend money and after a certain (previously unknown) timeout the
last spender gets the auctioned artifact. The auction component is initialized
with an arbitrary but a non-zero timeout. It counts down using the ticks and
stores the last bidder as he will be the winner.

amiauction :: "((nat * Bid * IAP), Bid addTick, BidUclosed addTick) ioa"

amiauction_def:

"amiauction ≡
(UNIV, UNIV, UNIV,

{t.∃ k b m x.

(* handle time and accept the last bid

as soon as the time limit is reached *)

t = ((k+1,b,x),
√
, (k,b,x), <

√
>) ∧ k > 0 ∨

t = ((0,b,x),
√
, (0,b,x), <

√
>_<Msg closed>) ∨

t = ((1,b,I),
√
, (0,b,I), <

√
>_<Msg closed>) ∨

t = ((1,b,A),
√
, (0,b,A), <

√
>_<Msg (accept b)>_<Msg closed>) ∨

(* store the new bid m if necessary *)

t = ((k+1,b,x), Msg m, (k+1,m,A), ε) ∨ t = ((0,b,x), Msg m, (0,b,x), ε)},

{((ε s. fst s > 0 ∧ snd (snd s) = I), ε)})"

The above automaton is well-de�ned, deterministic and complete. By applying
the operator ioafp, we map this automaton into a function that is continuous
by construction. The recursive de�nition of a stream-processing function is now
embedded in the ioafp operator, leaving a non-recursive but explicit de�nition
of the actual behavior in an event based style.

In fact, a number of proof principles are established on these state machines
that do not need inductive proof anymore, but just need to compare transitions
and states. More precisely, the behaviors can then be compared by establishing
a (bi-)simulation relation between the automata.

A non-deterministic I/O∗-automaton is de�ned in an analogous form and not
mapped to a single but a set of stream-processing functions. This is especially
suitable to deal with underspeci�cation.

As said, ALICE is still in development. Although we have initial results on
this kind of speci�cation style, we will further elaborate ALICE to comfortably
deal with I/O∗-automata of this kind in the future.
1 Due to lack of space, we skip HOL's keyword constdefs in front of a de�nition but symbolize
it by indentation. We also do not introduce the necessary type declarations, which is actually
straightforward for the speci�cations used here.



3 Alternating Bit Protocol - An Example

Based on the theory introduced so far, we show the usefulness of ALICE by
developing a small, yet not trivial and well known example.

The Alternating Bit Protocol (ABP) is a raw transmission protocol for data
over an unreliable medium. Goal of the ABP is to transmit data over a medium
that looses some messages, but does not create, modify, rearrange or replicate
them. The key idea is that the sender adds an identi�er to each message that
is being sent back as acknowledgement by the receiver. If the acknowledgement
does not arrive, the sender sends the same message again. When only one single
message is in transmission, the identi�er can boil down to a single bit with
alternating value � hence the name of the protocol.

The ABP speci�cation involves a number of typical issues, such as underspec-
i�cation, unbounded non-determinism and fairness. Fig. 2 illustrates the overall
structure of the ABP. A detailed explanation of a similar speci�cation can be
found in [BS01].

Sender Receiver

Medium
(Bit)

Medium
(Data x Bit)ds : Data x Bit

as : Bit ar : Bit

dr : Data x Bit

o : Datai : Data

Fig. 2. The architecture of the Alternating Bit Protocol (ABP)

3.1 The ABP Medium

Please note that the medium is modeled after the existing, real world, while
sender and receiver need to be speci�ed and later implemented in such a way
that they can safely deal with the given medium. So, we �rst specify the behavior
of the medium as described above.

Med :: "'t astream ⇒ 't astream ⇒ bool"

Med_def:

"Med x y ≡
∃ p. #(afilter {True} ·p) = ∞ ∧

y = apro1 ·(afilter {a. ∃ b. a = (b, True)} ·(azip ·x ·p))"

Through the use of an internal oracle stream p, we can describe that a medium
does eventually transmit a message if we retry long enough. The fairness, as
described below, is deduced from the above speci�cation as follows.

[[#x = ∞; Med x y ]] =⇒ #y = ∞

The lemma is proven easily using the following auxiliary lemma, since the lengths
of the �rst and the second pointwise projection (apro1 and apro2 respectively)
of a stream consisting of ordered pairs are equal.



∀ x. #x = ∞ −→ apro2 ·(afilter {a. ∃ b. a = (b, z)} ·(azip ·x ·p)) = afilter {z} ·p

The above auxiliary lemma is again proven by induction on the free stream
variable p using an appropriate proof principle from Section 2.4.

3.2 The Sender

Now, relative to a given medium, we have to de�ne a sender and a receiver
that establish the desired behavior: safe transmission of messages. The sender
receives data from outside and transmits them together with the alternating bit.
We give a speci�cation in a functional style:

Snd :: "Data astream ⇒ Bit astream ⇒ (Data * Bit) astream ⇒ bool"

Snd_def:

"Snd i as ds ≡
let

fas = aremstutter ·as;
fb = apro2 ·(aremstutter ·ds);
fds = apro1 ·(aremstutter ·ds)

in

fds v i ∧
fas v fb ∧
aremstutter ·fb = fb ∧
#fds = imin #i (iSuc (#fas)) ∧
(#fas < #i −→ #ds = ∞)"

We explicitly de�ne the channel observations for the sender in Fig. 2. The con-
juncts in the in part of the de�nition constrain the sender in the order of their
appearance, using the abbreviations from the let part, as follows

1. Abstracting from consecutive repetitions of a message via aremstutter, we
see that the sender is sending the input messages in the order they arrive.

2. The sender also knows which acknowledgement bit it is waiting for, never-
theless, it is underspeci�ed which acknowledgment bit is sent initially.

3. Each new element from the data input channel is assigned a bit di�erent
from the bit previously assigned.

4. When an acknowledgment is received, the next data element will eventually
be transmitted, given that there are more data elements to transmit.

5. If a data element is never acknowledged then the sender never stops trans-
mitting this data element.

3.3 The Receiver

The receiver sends each acknowledgment bit back to the sender via the acknowl-
edgment medium and the received data messages to the data output channel
removing consecutive repetitions, respectively.

Rcv :: "(Data * Bit) astream ⇒ Bit astream ⇒ Data astream ⇒ bool"

Rcv_def: "Rcv dr ar o ≡ ar = apro2 ·dr ∧ o = apro1 ·(aremstutter ·dr)"



3.4 The Composed System

The overall system is composed as de�ned by the architecture in Fig. 2. This
composition is straightforwardly to formulate in ALICE:

ABP :: "Data astream ⇒ Data astream ⇒ bool"

ABP_def:

"ABP i o ≡ ∃ as ds dr ar. Snd i as ds ∧ Med ds dr ∧ Rcv dr ar o ∧ Med ar as"

This formalization of the ABP uses a relational approach similar to the
speci�cation in [BS01]. However, formalizations as sets of functions or in a state-
based manner are possible as well. Using a more elaborate version of ALICE, we
will be able to de�ne a state-based version of sender and receiver (similar to
[GGR06]), which is on the one hand more oriented towards implementation and
on the other hand might be more useful for inductive proof on the behaviors.
Most important however, we will be able to prove that this relational and the
state-based speci�cations will coincide.

For this case study, we remain in the relational style and specify the expected
property of the overall system (without actually presenting the proof):

ABP i o =⇒ o = i

Please note that, at this stage of the development of ABP, there are neither
realizability nor sophisticated timing constraints considered in the above for-
malization. Due to relational semantics, additional re�nement steps are then
needed to reduce the underspeci�cation towards an implementation oriented or
timing-aware style, since there are in�nite streams ful�lling the speci�cation
that are not valid protocol histories. These, however, would not occur, when us-
ing sets of stream-processing functions as they impose continuity on the overall
behavior.

4 Discussion

In this paper we have introduced ALICE, an advanced logic for formal speci�ca-
tion and veri�cation of communication in distributed systems. ALICE is embed-
ded in the higher order logic HOL, which itself is formalized using the Isabelle
generic theorem prover.

Our approach is based on using HOLCF to deal with partiality, in�nity,
recursion, and continuity. We provide techniques to use ALICE directly from
HOL, thus preventing the user to actually deal with HOLCF specialities.

ALICE is currently under development. So not all concepts and theories pre-
sented here are already completely mature. Further investigations will also deal
with the question of expressiveness, applicability and interoperability. Beyond
the ABP, we already have some experience with other formalizations that show
that the overhead of formalizing a speci�cation in ALICE as apposed to a mere
paper de�nition is not too bad. However, it also shows where to improve comfort.
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