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Abstract: Modelling the logical architecture of an 
automotive system as one central step in the 
development process leads to an early 
understanding of the fundamental functional 
properties of the system under design. This supports 
developers in making design decisions. However, 
due to the large size and complexity of the system 
and hence the logical architecture, a good notation, 
method and tooling is necessary. In this paper, we 
show how logical architectures can be modelled 
succinctly as function nets using a SysML-based 
notation. The usefulness for developers is increased 
by comprehensible views on the complete model 
that describe automotive features, variants, and 
modes. 
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1. Introduction 

Developing automotive embedded systems is a 
complex task since a large number of different 
functions from several vehicle domains interact in 
many ways. As for software functions which are the 
main driver for innovations in the automotive domain, 
experts estimate that, by 2010, one gigabyte of 
onboard-software will be integrated in premium class 
vehicles [8]. 
Mature methodologies and processes are needed to 
break down the complexity into manageable tasks. 
Likewise important is a good tool support to 
efficiently perform the development tasks like 
requirements engineering for vehicle features, 
planning software and hardware architecture or 
designing controllers and implementing the software.  
In this paper, we assume a development process as 
depicted in Figure 1. Different teams that are 
responsible for developing a certain feature (i.e., 
functionality perceptible by customers) capture the 
requirements mostly textually with the help of a 
requirements management system (RMS), e.g. 
DOORS [14]. A software and hardware architecture, 
a mapping between these two, and the final 
realisation are derived from this abstract form of 
specification in subsequent working stages. These 
are ideally developed by applying the AUTOSAR 
methodology [1] and related tools. 

As an important step in between, we assume the 
modelling of a logical architecture since the 
frequently found direct transition from feature 
requirements to hardware and software architecture 
raises some problems. Specifying software typically 
involves the decision which logical functions can be 
integrated in a single software function or have to be 
split to more than one software function. Design 
decisions about which logical function is 
implemented in hardware or software have to be 
made. Without an explicit logical architecture, a 
consistent functional integration becomes difficult 
and high coordination efforts are needed, especially 
if several suppliers are involved. The main reason is 
the complexity of automotive software architecture 
which makes a more abstract representation 
necessary to document the main functionalities and 
design decisions in a readable comprehensible 
model.  

Figure 1 Development Process 

 
To be practically useful, logical architectures have to 
fulfil the following requirements. 

1. The logical architecture provides a system 
description that is more abstract than 
descriptions on the software and hardware 
architecture level. It should not contain 
technical details. 
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2. Automotive systems are typically not developed 
from scratch. Development documents from 
previous product cycles form the basis for 
following development activities. Being able to 
re-use and to adapt logical architectures hence 
is a key requirement for the desired productivity 
and quality gain of using logical architectures. 

3. That also means that logical architectures must 
provide a comprehensible documentation of 
functional knowledge and functional 
interrelations, thereby establishing a shared 
understanding of the system’s main properties. 

4. Care must be taken that this shared 
understanding is comprehensible for the 
different involved stakeholders (e.g. function 
developers, people in charge of safety, 
suppliers, etc.) who are often people with a 
different professional background. 

5. Since comprehensibility of the logical 
architectures is a critical aspect, the logical 
architecture should also contain non E/E parts, 
e.g. hydraulics, Bowden cables or 
environmental objects like the street. The 
elements shift the focus from modelling only the 
system under design to a more complete 
understanding of the system interacting with its 
environment. 

6. Developing a modelling language for logical 
architectures should be done in line with 
existing standards and therefore increase the 
acceptance of the approach. 

The demand for a more abstract system description 
(logical architecture) compared to software and 
hardware architecture has also been stressed in 
[15,16]. We follow the author’s opinion that an 
appropriate level of abstraction for modelling logical 
architectures is the use of logical functions and their 
exchanged signals disregarding technical details. 
We denote this kind of logical architecture model 
“function net”. However, logical architectures of 
complete systems are typically far too complex given 
the mere number of functions and signals 
exchanged.  
The following problems hinder the usefulness of 
function nets for complete systems because of the 
scalability issue. 
 

1. Requirements of vehicle features cannot easily 
be retrieved of the complete function net. Being 
able to trace vehicle features to logical 
functions is important because the impact of a 
requirements change for a feature has to be 
analysed in the complete function net. 

2. The function net contains all functions in all 
variants (sometimes called “150% car”). It does 
not become clear how a valid configuration of a 
function net for one car would look like. 

3. Modes which are internal state changes of 
functions that result in a major change in the 
system behaviour (like altered signal 
communication in case of error degradation) 
are collectively presented in the static function 
net. 

We propose that vehicle features, variants, and 
modes can all be captured in a uniform way by using 
views on the complete function net. Since views can 
be modelled using the same notation as for complete 
function nets (as shown in the next section), 
switching viewpoints between complete function nets 
and views is possible without difficulty. 
The rest of the paper is structured as follows. 
Section 2 describes how function nets and function 
net views can be modelled using a variant of SysML  
Internal Block Diagrams. In the following sections, 
we show how these views can be used for different 
purposes: Section 3 introduces views that model 
vehicle features. In Section 4 views are used to 
capture variants, and in Section 5 modes are 
described using views. Section 6 presents related 
work and Section 7 concludes the paper.  

2. Complete Function Nets and Views 

In order to model logical architectures as function 
nets, a concrete notation has to be used. There are 
various options on which a notation for function nets 
could be based. In [3] we already evaluated UML 2.0 
[5] and other UML derivates like UML-RT [13] and 
SysML [6] which in general were found suitable for 
architecture and function net modelling [10,11,15]. 
The detailed reasons for favouring SysML over UML 
are repeated below: 

• SysML uses Systems Engineering terminology. 
To be more intuitive for people with different 
professional backgrounds specific terminology 
of single professional guilds should be avoided. 
Notations which have their roots in computer 
science (which use object oriented terminology 
like classes, objects, associations, etc.) just as 
well as terminology soley accepted in any other 
domain, e.g., control theory are likely not to be 
accepted by different users. SysML already 
tried to find a good compromise between the 
different involved terminologies by using a 
commonly accepted core only. 

• SysML requires no strict two layered modelling 
like in the UML where each structured class 
consists of parts with no internal structure. This 
results in more compact diagrams because 
layers are not distributed among multiple 
diagrams but can be represented in a single 
model.  

• SysML block diagrams allow us to show 
communication across multiple hierarchy layers 
without the explicit use of port delegation. This 



 Page 3/7 

simplifies the notation, enhances the readability 
and avoids the use of unnecessary 
intermediate signals. 

• A SysML block abstracts from the strict 
instance/type division of the UML which 
complicates modelling architectures effectively 
where many elements occur only once in the 
hierarchy. 

• SysML distinguishes between the form of a 
diagram and its use. This was extremely helpful 
when we wanted to use the same diagram type 
with a different semantics. This makes it 
possible to use one diagram type to model 
views, variants, modes and complete function 
nets (as later shown) which improves the 
compactness of the notation and decreases the 
necessary training effort. 

2.1 Complete Function Nets 
Figure 2 shows an example of a function net 
diagram. The diagram shows a simplified complete 
function net “CarComfort” which in our case just 
consists of a model of the central locking 
functionality. Please note that for organizational 
reasons diagrams can be split such that many 
diagrams exist that describe the whole system in 
diagrams of readable size. The central locking 
function evaluates the driver’s request and closes or 
opens the doors accordingly. Additionally, an auto 
lock functionality is modelled, i.e. the doors close 
automatically if the vehicle exceeds a certain speed 
limit.  

ButtonOn
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StatusOn
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CentralLocking

ButtonOff

ButtonEval

StatusOff

DriverRequestCL
Left:Door

AutoLockStatus

VehicleSpeed

StatusCL

CmdOpenClose

Right:Door

BackDoor

ButtonOn
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StatusOn
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CentralLocking

ButtonOff

ButtonEval

StatusOff
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StatusCL
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Right:Door
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Figure 2 Function Net Example 

Syntactically, the function net is a valid SysML 
Internal Block Diagram (ibd). In that example, we 
used three layers of hierarchy (top-level, block 
“CLRequestProc” and, e.g., “ButtonOn”). With the 

signal “DriverRequestCL”, it also shows an example 
of cross-hierarchy communication. 
For keeping the function net redundant-free and for 
enabling the re-use of a block multiple times, 
instantiation is also possible. In the example, there 
are two doors, which are instantiated by giving each 
block a name, in this case “left” and “right”. These 
two blocks share their behaviour but not their internal 
state. A more detailed description about the 
instantiation mechanism can be found in [3]. 
We tailored the full SysML Internal Block Diagrams 
to our specific needs to enable compact definitions 
and decrease the learning effort for the notation. An 
Internal Block Diagram that is used as a function net 
may only contain directed connectors to indicate the 
signal flow direction. Multiplicities of blocks and 
connectors are not used in the sense that there is 
always exactly one block or signal. 
 

2.2 Views of Function Nets  
SysML allows us to use the same diagram type for 
complete function nets and views. Hence views are 
modelled as Internal Block Diagrams with a few 
specific properties. Views are always related to 
some complete function net. Compared to the 
complete function net, a view which is marked with 
the stereotype “view” may leave out blocks, signals 
or hierarchy information. In views, blocks from other 
features can be imported and marked with a 
stereotype “ext” to clarify that this block is part of the 
context of the view and not a central aspect. 
Additionally, “environmental” blocks and non-signal 
communication can be added to further increase 
understandability. The environmental elements refer 
to non E/E elements that have a physical 
counterpart. 
The example in Figure 3 shows that whole blocks 
from the complete function net have been left out 
(block “CLRequestProc”) and that the blocks 
“CentralSettingsUnit” and “VehicleState” have been 
included in the view to clarify where the signals 
“AutoLockStatus” and “VehicleSpeed” originate. 
Also, some environmental elements are included. 
The physical door look “LockActuator” is shown in 
the figure and marked with the corresponding 
stereotype “env”. Non-signal communication can be 
marked with a stereotype “M” for mechanical 
influence (as shown in the example), “H” for 
hydraulics, and “E” for electrical interactions. 
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Figure 3 View on a Function Net 

 
To assure the consistency between a view and the 
complete function net of the system the following 
consistency conditions must hold. 

1. Each block in the view without a stereotype 
“ext” or “env” must be part of the complete 
function net. 

2. Whole-Part-Relationships in the view must be 
present in the complete function net. It is 
permitted to leave out intermediate layers.  

3. Elements that are related via a (possible 
transitive) Whole-Part-Relationships in the 
complete function net must also have this 
relation in a view if both elements are shown. 

4. Communication relationships not marked with a 
stereotype shown in the view must be present 
in the logical architecture. If the concrete signal 
is omitted in the view, an arbitrary signal 
communication must exist in the complete 
function net. 

5. Communication relationships need not be 
drawn to the exact source or target, any super-
block is sufficient if the exact source or target 
block is omitted. 

3. Using Views to Describe Features 

A feature of a system describes a certain 
functionality that can be observed by customers. In 
automotive systems the concrete configuration is 
usually chosen by the customers when ordering a 
car. The structure and the interdependencies of 
features are usually described by feature trees [4] or 
related notations which help to distinguish valid and 
invalid combinations of features from each other.  
The features of automotive systems can be modelled 
by interacting functions in logical function nets. The 
mapping between features and their realising 
functions may be complex: A feature is usually 
implemented by a set of interacting functions 
whereas a single function may play a certain role in 
the realisation of different features. The mapping is 
often neglected during later development steps 
where the developers concentrate on the realisation 

of the complete function net and discard their initial 
models. This situation can be avoided by using 
views which are kept consistent to the complete 
function net and are therefore a valid and up-to-date 
model of a single feature throughout the whole 
development lifecycle. 
A new type series is usually planned on a modified 
feature set of the predecessor by deciding which 
features remain unchanged and which are omitted or 
replaced by a refined version. This modified feature 
set is usually the origin to model the new function 
net. The re-use of specifications is an advantageous 
approach because this simplifies the re-use on the 
subsequent abstraction layers. 
Views enable the independent modelling of a feature 
by showing only the functions and signals that 
interact to realise a specific feature. Using this idea a 
set of views specifies the behaviour of a feature in a 
self-contained description. In addition these views 
are consistent to a complete function net which 
models the automotive system. 
Another advantage of this approach is that these 
feature views are a way to model a feature without 
explicitly showing its realisation within a certain 
automotive system. Especially the interface of 
functions is reduced to the necessary parts. These 
models then can be reused within the next type 
series which reduces the development cost and 
increases the quality as already approved 
descriptions are reused. In addition views allow the 
developers to analyse the impact of a change 
request by modifying the view and a subsequent 
check for consistency with the complete function net. 
Figure 4 shows the embedding of views in the 
development process. 
In feature views not only software functions are 
modelled but also physical devices and elements of 
the environment can be included. This allows the 
modelling of closed world controllers and increases 
the understandability of the functionality provided by 
the feature. The notation also helps the modeller to 
focus on the central aspects of a feature by using the 
stereotype “ext”. Blocks that are not central to the 
feature but provide necessary signals are marked as 
external to indicate that their realisation is not 
detailed here.  
An example for the use of views can be found in 
Figure 3 where the Auto lock feature with its most 
relevant functions is explained. Please note that the 
block VehicleState is marked as external to increase 
the re-use of this diagram, as the determination of 
the vehicle speed may vary from type series which is 
not central to the realisation of this feature as long as 
there is any subsystem which provides such a 
signal. The internal behaviour of the block 
“CentralLocking” would be explained in more detail 
by another diagram or another suitable textual or 
model-based specification. 
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Figure 4 Example Development Process including 
views for individual features 

 

4. Using Views to Model Variants 

Besides describing different features with views 
independently of the concrete automotive function 
net in which they are realised, different model 
variants can be described by a view. 
The variants of a feature usually provide the same 
principle functionality but are distinguishable by 
having different individual properties. The complete 
function net includes all variants (the “150% car”) 
and through parameterization the intended variants 
are chosen. This approach leads to complex function 
nets that make it difficult to understand which parts 
are responsible for realising the considered variant 
when the complete function net is solely used. The 
individual views for certain variants simplify the 
understanding because they show a single variant 
only and are therefore much clearer. 

Using this approach, the blocks forming the 
behaviour of a variant are still localised in the 
complete function net in the sense that the views for 
variants are only an extract of the complete function 
net. An alternative way would be annotating (in form 
of stereotypes) the variant information to the 
complete function net and using this function net 
only. Each block can then be part of some or all 
variants.  This approach turned out to overcrowd the 
function nets whereas using views facilitates clearer 
and simpler models. 

Examples for using variants are the two versions of 
the “CentralLocking” subsystem. The basic system 
does not analyse the vehicle speed and therefore 

the doors are not closed automatically, whereas the 
premium function interacts with the other function to 
close the doors automatically if a certain speed is 
exceed. Figure 5 shows the two views for the 
variants of the CentralLocking block by drawing a 
single diagram for each variant. In the basic view the 
block “EvalSpeed” is omitted to illustrate that this 
blocks is disabled in this variant. The incoming signal 
“VehicleSpeed” is omitted to indicate that it will be 
ignored by the other blocks and does not play a role 
in the modelling of this variant. The “OpenClose” 
signal is omitted to indicate that it will never be sent 
by this variant. 

<<view >> ibd CentralLockingBasic

AutoLockStatus StatusCL

CmdOpenClose

ErrorDetection

AutoLockStatus

Status

Arbiter

<<view >> ibd CentralLockingPremium

AutoLockStatus StatusCL

CmdOpenClose

ErrorDetection

AutoLockStatus

VehicleSpeed
EvalSpeed

OpenClose Status

Arbiter

 

Figure 5 Using views to model variants 

We recommend to describe each variant by a single 
view that is consistent to the automotive function net 
by fulfilling the conditions listed in Section 2.2. The 
view may not be limited to the blocks under design 
but include the environment of the block to describe 
the interaction of this block in more detail and allow a 
better understanding of the variant properties. 

5. Using Views to Model Modes 

Automotive systems are safety-critical systems in the 
sense that a high reliability has to be assured. 
Therefore, faults in subsystems usually have to be 
recognised and handled in order to control the fault’s 
impact on the overall system. In the presence of 
faults, affected functions should as long as possible 
provide at least a basic functionality. A complete 
failure has to be avoided at all costs. In contrast to IT 
systems where an administrator can be informed 
about a problem who can take immediate actions if 
necessary, an automotive system has to work 
autonomously. Usually as long as possible a safe 
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CarComfort CarComfort
Degradation

[StatusOn == faulty ||
StatusOff == faulty]

[Reset]

degradation mode is used where a limited 
functionality is available until a hardware defect is 
repaired in the garage.   
Modes are an important concept to simplify the 
description of error degradation in function nets. 
When a function block changes its operating mode, it 
usually shows a different behaviour. The different 
modes of operation can be described by a SysML 
Statechart where the states are named as the 
modes of operation. Each of the modes shows a 
distinct observable behaviour and can be described 
by an Internal Block Diagram or a view. The 
transitions are used to describe the conditions which 
force a change of the mode of operation. 
An example for such a Statechart is shown in Figure 
6 where two modes are used: One normal mode 
(“CarComfort”) and error degradation 
(“CarComfortDegradation”) where the evaluation of 
the button results in error values. The transitions 
between the two states indicate that the degradation 
mode is entered when one of the input signals 
“StatusOn” or “StatusOff” shows faulty values. The 
normal mode is entered again, if the system is reset, 
e.g. switching the engine of the car off. 

Figure 6 Error degradation 

 
The normal mode is already described in Figure 2 
whereas the degradation is shown in a view that can 
be found in Figure 7. The block “CLRequestProc” is 
left out to illustrate that the function is not available in 
the degradation mode. All incoming signals are 
removed to indicate that they are ignored. The signal 
“DriverRequestCL” is omitted because it is not sent 
in this mode. 
 

Figure 7 Using a view to describe a mode 

 
Moreover, the use of modes is not limited to explain 
the error degradation in automotive systems but it 

can also be used to describe other modes of 
operation. A further example would be the different 
behaviour of the “CentralLocking” block for rear 
doors if the parental control is activated or not. 

6. Related Work 

In [15] function net modelling with the UML-RT is 
described. We extended this approach by using the 
SysML for modelling function nets and explained its 
advantages. We supplement the approach by views 
that simplify the transition from requirements to early 
design phases (feature views), that can capture 
variants, and modes. 
In [12] view merging in the presence of 
incompleteness and inconsistency is described. The 
merging algorithm also simplifies the transition from 
requirements to early design phases like our 
approach. Especially the constant evolution of 
requirements during the development makes it 
difficult to apply such algorithms to our problem. That 
is why we explicitly decided against automatic 
merging of views to obtain a complete function net. 
By checking the consistency between diagrams, 
consistency problems are found that need to be 
resolved manually. 
In [9,17] service oriented modelling of automotive 
systems is explained. The service layer is similar to 
the modelling of features. In addition we explored 
how services can benefit from modelling the 
environment together with the feature.  
In [18] an alternative approach to the modelling of 
automotive systems using a formal approach is 
explained. Modes are defined here without the use 
of views but with a modularization approach. 
In [2] the use of rich components is explained that 
employ a complex interface description including 
non-functional characteristics. In contrast to our 
approach rich components focus less on the 
seamless transition from requirements to function 
nets but assume an established predefined 
partitioning in components. 
The AUTOSAR consortium [1] standardises the 
software architecture of automotive systems and 
allows the development of interchangeable software 
components. One main drawback of this approach is 
that software architectures are too detailed in early 
development phases where function nets are 
commonly accepted by developers. 
In [7] a notation is introduced how variants can be 
annotated inside normal software models. The 
available model elements are marked by a graphical 
notation and included in the derived variants. The 
notation is not formalised further and it remains 
unclear how the approach scales if different variants 
are not very similar. 

<<view>> ibd CarComfortDegradation

CentralLocking

Left:Door

AutoLockStatus

VehicleSpeed

StatusCL

CmdOpenClose

Right:Door

BackDoor
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7. Conclusion 

In this paper, we proposed to model the logical 
architecture of an automotive system as a function 
net using a SysML-based notation. To increase the 
usability of the function net we defined views on that 
function net to alleviate the scalability problem that 
turns up because of the large number of functions 
and signals in a complete model. We showed how 
views can be used to describe vehicle features, 
variants and modes. Using the same notation for all 
of these purposes allows for an easy switching of 
viewpoints.  
We concentrated on structural issues and only 
touched dynamic aspects when we introduced 
modes. In order to obtain a complete architecture 
description, also behavioural models may be 
integrated. It is, for example, possible to add timing 
or sequence diagrams to feature views to describe 
typical use cases or scenarios. Annotation of (non-
functional) properties (physical, timing, etc.) to 
function nets can be made to document fixed design 
decisions or additional constraints. These are 
directions for further research. 
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