
Technische Universität Braunschweig

Carl-Friedrich-Gauß-Fakultät,
Department Informatik

Institut für Software Systems Engineering

Modular Description of a Comprehensive Semantics
Model for the UML

Version 2.0

Informatik-Bericht 2008-06

Manfred Broy1, Marı́a Victoria Cengarle1,
Hans Grönniger2 and Bernhard Rumpe2

1Software and Systems Engineering,
Technische Universität München, Germany

2Software Systems Engineering,
Technische Universität Braunschweig, Germany

October, 2008

Contents

1 Introduction to the System Model for UML 5
1.1 General Approach to Semantics . 5
1.2 Structuring the Semantics of UML . 6
1.3 The Math behind the System Model . 8
1.4 Static and Dynamic Issues . 9
1.5 What is the System Model? . 10
1.6 Notational Conventions . 10
1.7 System Model Evolution . 11

2 Static Part of the System Model 12
2.1 Type Names and Their Carrier Sets . 12

2.1.1 Variation Point: typeOf . 13
2.1.2 Typing Examples . 13

2.2 Basic Type Names and Type Name Constructors . 14
2.2.1 Variation Point: Basic Types . 14

2.3 Variables . 15
2.3.1 Visibility and Unique Variable Names . 15

2.4 Summary of Types, Variables and Values . 16
2.4.1 Variation Point: Records . 16
2.4.2 Variation Point: Cartesian Products . 17

2.5 Class Names and Objects . 17
2.6 Subclassing . 19
2.7 Summary of Classes and Objects . 21

2.7.1 Variation Point: Subclassing Respects Structure . 21
2.7.2 Variation Point: Antisymmetric Subclassing . 22
2.7.3 Dynamic Reclassification of Objects . 22
2.7.4 Variation Point: Objects are Values . 22
2.7.5 Variation Point: Generic Type System . 23

2.8 Data Store Structure . 24
2.8.1 Variation Point: Finite Object System . 25
2.8.2 Variation Point: Locations . 25
2.8.3 Variation Point: Reference Types . 26

2.9 Class Variables and Constants . 27
2.10 Associations . 27

2.10.1 Variation Point: Simple Associations Only . 29
2.10.2 Variation Point: Plain Binary Associations . 30
2.10.3 Variation Point: Realization Techniques for Binary Associations 30
2.10.4 Variation Point: Qualified and Ordered Binary Associations 31

2.11 Summary of the Data State of the System Model . 32
2.12 An Example for the Structural System Model . 33

3 Control Part of the System Model 39

2

3.1 Operations . 40
3.2 Methods . 41
3.3 Stacked Method Calls . 43
3.4 Multiple-thread Computation, Centralized View . 44
3.5 Multiple-thread Computation, Object-Centric View . 44
3.6 Summary of Threads and Stacks . 46
3.7 Example for Operations, Methods, and ControlStore . 46

3.7.1 Variation Point: Single Thread Only . 49
3.7.2 Variation Point: Message Passing Objects Only . 49
3.7.3 Variation Point: Active vs. Passive Objects . 49
3.7.4 Variation Point: Objects located in Regions . 50

4 Messages and Events in the System Model 51
4.1 Messages, Events and the Event Store . 51
4.2 Method Call and Return Messages . 52
4.3 Asynchronous and Broadcast Messages . 54

4.3.1 Example: Handling Signals . 54
4.3.2 Variation Point: Multicast . 55
4.3.3 Computation and Scheduling . 55

4.4 Example for Events and Messages . 55
4.5 Summary of Messages and Events . 55

5 Object State 57
5.1 Individual Object States . 57
5.2 Grouped Object States . 57

5.2.1 Example: Layout of an Object Structure . 58
5.3 Summary of Object State . 58

6 Event-based Object Behavior 60
6.1 Variation Point: Method Definitions . 60

6.1.1 Control Flow State Transition Systems . 60
6.2 Event-Based State Transition Systems . 62

6.2.1 ESTS Definition . 62
6.2.2 Variation Point: Deterministic ESTS . 63
6.2.3 Variation Point: Composing CFSTS to ESTS . 63
6.2.4 Variation Point: Basic Scheduling in the ESTS . 67

6.3 Summary for Event STS . 68
6.4 Variation Point: Composing ESTS to System STS . 68

7 Timed Object Behavior 71
7.1 Object Behavior in the System Model . 71
7.2 State-based Object Behavior . 73
7.3 Mapping Event STS to Timed STS . 74

7.3.1 General Mapping of Event STS to Timed STS . 74
7.3.2 Variation Point: Constraining the Timed STS . 74

7.4 The System Model Definition . 75
7.5 Summary for Object Behavior with Timed STS . 75

8 Concluding Remarks 77
8.1 Further Extensions . 78

3

Bibliography 79

A Basic mathematics used 83
A.1 Functions, Logic, Sets . 83
A.2 Collections (or Containers) . 84
A.3 Records . 85
A.4 Tuples: Cartesian Products . 85

B Central Model of Interaction: Streams, Components, STS 88
B.1 Types of Models for Interactive Systems . 88
B.2 Streams . 89

B.2.1 Basic Streams . 89
B.2.2 Timed Streams . 89
B.2.3 Channels and Histories . 89
B.2.4 Interfaces, I/O-Behaviors and Time . 91
B.2.5 Composition of Interface Behavior . 94

B.3 State Transition Systems . 97
B.3.1 STS-Definition . 97
B.3.2 Deterministic STS . 97

B.4 Timed State Transition Systems . 98
B.4.1 Definition of Timed State Transition Systems . 98
B.4.2 Composition of TSTS . 99
B.4.3 Interface Behavior and Interface Abstraction . 100

C Glossary: Summary of all Signatures 102

D List of Figures 107

E List of Definitions 108

F List of Lemmata and Variation Points 110

G List of Example Definitions 112

4

1 Introduction to the System Model for UML

In this document, we introduce a system model as a semantic domain for the Unified Modeling Language
(UML) [OMG07a, OMG07b]. The system model is supposed to form a possible core and foundation of
the UML semantics definition. For that purpose, the definitions in this document are targeted towards UML
which means that central concepts of UML have been formalized as theories of the system model.

This document is structured as follows: In the rest of Chapter 1, we discuss the general approach and
highlight the main decisions. This chapter is important to understand the rest of this document. Chapter 2
contains the definition of the structural part of the system model. Chapters 3 and 4 contain the control
and communication related definition definitions which form the basis to describe the state of a system in
Chapter 5. Two variants of state transitions systems are introduced to define object behavior in Chapters 6
(event-based) and 7 (timed). Chapter 8 concludes the document.

This document is the second version of the system model which is the result of a major effort to define
the structure, behavior and interaction of object-oriented, possibly distributed systems abstract enough to be
of general value, but also in sufficient detail for a semantic foundation of the UML. The first version of the
system model can be found in [BCR06, BCR07a, BCR07b].

1.1 General Approach to Semantics

The semantics of any formal language consists of the following basic parts [Win93]:

• the syntax of the language in question (here: UML) – be it graphical or textual,

• the semantic domain, a domain well-known and understood based on a well-defined mathematic the-
ory, and

• the semantic mapping: a functional or relational definition that connects both, the elements of the
syntax and the elements of the semantic domain.

This technique of giving meaning to a language is the basic principle of denotational semantics: every
syntactic construct is mapped onto a semantic construct. As discussed in the literature, there are many
flavors of these three elements. Syntax can, for example, be specified by grammars or metamodels. To
stay formal, our approach intends to use the abstract syntax of UML in a mathematical form that resembles
context-free grammars, examples are given in [CGR08b, CGR08a]. In [KRB96] the term system model
was used the first time to denominate a semantic domain; it defines a family of systems, describing their
structural and behavioral issues. Each concrete syntactic instance (in our case, an individual UML diagram,
or even a part of it) is interpreted by the semantic mapping as a predicate over the set of systems defined by
the system model. As explained in [HR04] the semantic mapping has the form:

Sem : UML→ P(Systemmodel)

and thus functionally relates any item in the syntactic domain to a set of constructs of the semantic domain.
The semantics of a model m ∈ UML is therefore Sem(m).

Given any two models m, n ∈ UML combined into a complex one m ⊕ n (for any composition operator
⊕ of the syntactic domain), the semantics of m ⊕ n is defined by Sem(m ⊕ n) = Sem(m) ∩ Sem(n). This
definition also works for sets of UML documents which allows an easy treatment of views on a system

5

specified by multiple UML diagrams. The semantics of several views, i.e., several UML documents is given
as Sem({doc1, . . . , docn}) = Sem(doc1) ∩ . . . ∩ Sem(docn) A set of UML models docs is consistent if
systems exist that are are described by the models, so Sem(docs) 6= ∅. As a consequence, the system model
supports both view integration and model consistency verification.

In the same way, n ∈ UML is a (structural or behavioral) refinement of m ∈ UML, exactly if Sem(n) ⊆
Sem(m). Formally, refinement is the nothing else than “n is providing at least the information about the
system that m does”. These general mechanisms provide a great advantage, as they simplify any reasoning
about composition and refinement operators.

The system model described in this document identifies the set of all possible object-oriented (OO) sys-
tems that can be defined using a subset of UML which we call “clean UML” as introduced below. It relies
on earlier work on system models [Rum96, KRB96, GKR96, BHH+97, BGH+98, SRS99].

To capture and integrate all the orthogonal aspects of a system modeled in UML, the semantic domain
necessarily has to have a certain complexity. Related approaches very often contain a relatively small and
specialized semantic domain, such as (pairs of) sets of traces for UML interaction [HHRS05], template
semantics based on hierarchical state machines [TA06] or Kripke structures [vdB02] for UML State Ma-
chines, or sets of inequations to give semantics to class diagrams focusing on satisfyability of association
cardinality [SKU06, CCGM07, MB07, FS07]. However, these approaches fail to give an integrated seman-
tics for different types of UML notations. Approaches with a broader scope are for example [DJPV03]
which define a UML subset called krtUML and associates with each model a symbolic transition system.
[KGKK02] combine class, object and state machine diagrams using graph transformations. In [ESW07]
dynamic metamodeling (also based on graph transformations) is used to define the operational semantics
of, e.g., UML activities. Semantics for class and state machine diagrams have been developed for different
purposes. [SB06] examines the refinement of associations. [FKdRdB06] provide a compositional semantics
that considers activity groups. [Lanar] additionally supports sequences diagrams and considers timing is-
sues. In [ZLQ06] consistency between (simplified) state machines and sequence diagrams is checked using
a model checker. Consistency conditions are also proposed [Li06, O’K06].

1.2 Structuring the Semantics of UML

Our long term goal is to define the semantics of a comprehensive core of well-defined concepts of UML.

Clean UML

etc.

Simplified UML System Model

Figure 1.1: General strategy for the definition of the semantics of UML 2.0

The overall strategy of giving semantics to a modeling language is depicted in Figure 1.1. The basic idea
expressed by this diagram is as follows:

• Full UML is restricted to a subset (called “clean UML”) that can be treated semantically without
overly sophisticated constructs.

6

• Clean UML is mapped by transformations into Simplified UML. In doing so, derived constructs of
UML are replaced by their definition in terms of constructs of the core. That way, notational exten-
sions and derived concepts can be eliminated. UML provides a number of derived operators which do
not enhance the expressiveness of the language but the comfort of its use. Derived constructs can be
defined in terms of constructs of the core as, e.g., state hierarchy of UML’s state transition diagrams
can be neglected without losing expressiveness.

• Simplified UML, finally, is mapped to the system model using a predicative approach.

The system model describes the “universe (set) of all possible semantic structures (each with its behav-
ior)”. The semantic mapping interprets a UML model as a predicate that restricts the universe to a certain
set of structures, which represents the meaning of the UML model. To be able to faithfully map concepts
from UML to the system model, the system model has to cover a number of basic concepts expressible in
UML. Otherwise, the semantic mapping cannot be defined in an adequate manner.

The system model itself is defined in a modular fashion. From a global viewpoint, a system in the system
model is a state machine. This semantic universe is introduced in layers of mathematical theories which are
shown in Figure 1.2. The links to basic mathematical theories defined in Appendix A (e.g., Function, Logic,
etc.) have been left out as they can be used in all theories without an explicit reference.

SYSMOD

Type

Type1

VoidVariable BoolInt

Object Nil

Class

Attribute

Subclassing

Data

DataStore1

DataStore

Association
Control

Thread

ControlStore

Method
StackFrame

Method1
Operation

TypeSafeOps

Events

Signal

MethodCall

MethodReturn

MessageEventStore

State ObjectStates2

ObjectStates1

TSTS

Channels

ObjBehavior

CompBehavior

ESTStoTSTS
TimedSTS

ESTS
EventSTS

STSStepper

B
A

A B

A Bextends: or

uses:

Legend:

Figure 1.2: Theories that constitute the system model

The rectangles in Figure 1.2 contain names of the theories, whereas arrows show a relationship among
concepts that could be paraphrased as “is defined in terms of”. For instance, basic theories for types and
objects are used to define the data, control, and event state of a system, that in turn are used to define the
state space for the transition systems.

When defining the constituents of the system model, we will state the decisions that have to be made,
that can be left open or do not even occur when staying informal. We clearly identify those decisions either
directly, or mark them as a “variation point” and leave it to the user of the system model to choose or adopt a

7

variation. Those variation points may very nicely correspond to stereotypes on the language side, such that
the language designer (and semantics definer) can transfer the freedom of choice to the actual modeler.

1.3 The Math behind the System Model

A precise description of the system model calls for a precise instrument. For our purposes, mathematics is
exactly appropriate because of its power and flexibility. Admittedly, reading and understanding mathematics
is an effort that requires some training, but it allows for precisely and abstractly describing things that cannot
be defined using e.g. UML itself. Using UML itself to describe semantics of UML might seem, on the
contrary, a pragmatic approach. This approach, however, is somewhat meta-circular and necessarily calls
for a kind of bootstrap, typically mathematics again. Moreover, understanding the semantics of UML in
terms of UML itself, demands a very good knowledge of the language whose semantics is about to be
formally given. Besides, UML does not conveniently provide the appropriate mechanisms we need, e.g., to
handle scheduling, distributed systems and to deal with underspecification in a precisely controllable way.
Of course, whenever appropriate, we use diagrams to illustrate some mathematically defined concepts, but
the diagrams do not replace the mathematical formulas.

Instead of relying on basic mathematics, related work often proposes the use of specialized formalisms.
[BF98, ELFR99] translate UML to the formal language Z while [SG06] map to B. Graph transformations are
used in [KGKK02]. The process algebra π-calculus has been proposed to model activities [KKNR06] that
also have been formalised using Petri nets [SH05], or Abstract State Machines (ASMs) [SG06]. Trace-based
semantics for interactions have been presented in [HHRS05, CK04]. Metamodeling techniques have been
employed by [ESW07]. Template semantics [TA06] that are based on state machines allow for describing
semantic variation points.

We intentionally avoided the use of more specialized notations such as Z, B, ASMs, etc. for two reasons.

• It is not clear that any of these notations is general and comfortable enough to allow a satisfactory and
adequate expression of all concepts in UML.

• Arguably, all these notations have a certain bias (e.g., for state-based formal specification, analysis
with a theorem prover, analysis with a model checker); we kept the system model free of this bias
to ensure that we obtain a true reference semantics that, if useful, enables the future use of other
notations for, e.g., analysis purposes.

Because of these reasons we decided to use only mathematics. The following principles have proven to
be useful when defining the system model:

1. Mathematics is used to define the system model. Its sub-theories are built on: numbers, sets, relations,
and functions. Additional theories are built in a layered form. That is, only notation and mathematical
definitions and neither new syntax nor language are introduced or used in the system model. Diagrams
are occasionally used to clarify things, but do not formally contribute to the system model.

2. The system model does not constructively define its elements, but introduces the elements and char-
acterizes their properties. That is, abstract terms are used whenever possible. For instance, instead
of using a record to define the structure of an object, we introduce an abstract set of objects and a
number of selector functions. Properties of the set are then defined through such selectors. Based on
our background and knowledge, we claim that we can transform this system model into a constructive
version (and actually do this, cf. [CDGR07]), but that would probably be more awkward to read and
less intuitive, as it costs a lot more mathematical machinery. This will satisfy “constructivists” who
wish everything being constructive or executable.

8

3. Everything important is given an appropriate name. For instance, in order to deal with classes, there is
a “universe of class names” UCLASS, and similarly there is also a “universe of type names” UTYPE,
which however is just a set of names (and not types); see Sects. 2.5 and 2.1 below.

4. To our best knowledge, any underlying assumptions were avoided, according to the slogan: What is
not explicitly specified does not need to hold. If we, for instance, do not explicitly state that two sets
are disjoint, these two sets might have elements in common. Sometimes these loose (underspecified)
ends are helpful to specialize or strengthen the system model and are there on purpose. If you need
a property, (a) check whether it is there, (b) if absent, check whether it can be inferred as emerging
property, (c) if not, check if it is absolutely necessary, and (d), if yes, you may add it as an additional
restriction.

5. Generally, deep embedding (or explicit representation) is used. This means the semantics of the
embedded language, i.e., UML, is completely formalized within the supporting language, in our case,
mathematics. As one consequence, although there are similar concepts in the language describing the
system model (which is mathematics) and the language described (UML), these need not be related.
For instance, the system model characterizes the type system of UML, it however does not have and
does not need a type system itself.

6. Specific points, where the system model could be further strengthened, have been marked as “vari-
ation points”. Variation points deal with additional elements that can be defined upon the system
model. We may introduce additional machinery that needs not be present in each modeled system.
Prominent examples of such variations are the existence of a predefined top-level class called “Ob-
ject” or an enhanced type system, including, e.g., templates. Furthermore, variations describe changes
of definitions, that lead to a slightly different system model. Variation points allow us to describe spe-
cialized variants of the system model, that may not be generally valid, but hold for a large part of
possible systems. Examples are single inheritance hierarchies or type-safe overriding of operations in
subclasses, which may not be assumed in general.

1.4 Static and Dynamic Issues

An object-oriented system can basically be described using one of various existing paradigms. We opted
for the paradigm of a global state machine in order to accommodate a global (and maybe distributed) state
space. The system model, thus, defines a universe of state machines. A state machine is given by its state
space, its initial states, and its state transition function. Note that our notion of state machine is more basic
and does not directly relate to the state machines/state transition diagrams the UML provides.

The types and classes are static, i.e., they do not change over the lifetime of a system. Similarly, the sets
of defined operations, methods, messages, and events do not change. This information is called the static
information of a state machine. The set of existing objects, the values of the attributes, the computational
state of invoked methods, and dispatched and not yet delivered messages passed from one object to another
one are dynamic, i.e., they may change in transition steps. This latter is called the dynamic information of a
state machine and is coded in the states of the state machine. In the database realm, the static part is called
“schema”, and the dynamic part is the “instance”. The schema instantiation is changeable while the schema
itself is not. Schema changes (usually called “schema evolution” in the literature) are not considered, as
they usually do not occur within a running system, but when evolving and/or reconfiguring it.

Summarizing, the state space of the transition system will be defined in terms of the orthogonal con-
stituents data, control, and events. Each of these theories contributes static and dynamic information to the
system model definitions.

9

1.5 What is the System Model?

A system model provides a means to define the semantics of any UML model. A system sm ∈ SYSMOD
is defined in terms of a larger number of mathematically defined elements that are subsequently introduced.
In general, we introduce our elements in a bottom-up fashion, but we may refer to elements defined later.

Formally, when speaking about a system of the system model, we speak of an instance sm ∈ SYSMOD
as defined in Definition 7.4.1. Hence, a universe UTYPE of type names (as will be introduced in Chapter 2
below) defined for sm ∈ SYSMOD, is not necessarily the same in all systems. Therefore, UTYPE is a
shorthand for sm.UTYPE meaning that UTYPE is the universe of type names of the system sm. We simply
abbreviate to UTYPE whenever sm is clear from the context which in all the following definitions will be the
case, as we will talk about properties of an element sm of the system model SYSMOD. The same is true for
the state machine definition of the system. Each system is equipped with a state machine, i.e., a set of initial
states and a transition relation that build upon the defined universes of types, events, etc. So, formally, the
property definition starts with ∀ sm ∈ SYSMOD : . . . and ends with the definition of the universe of systems
SYSMOD in Definition 7.4.1.

The global state machine, if detailed enough, is perfectly appropriate to model parallel, independent
and distributed computations. In principle, a system of communicating, elementary state machines could be
considered more convenient than a single, global machine for describing the semantics of UML models. It is
also possible to construct a global state machine by integrating elementary ones; however, this is a non-trivial
operation. Therefore, it is more appropriate to employ the concept/metaphor of one state machine at a higher,
non-elementary level. In fact, we introduce a composition operator on state machines representing fragments
of larger systems, such that these state machines can be composed, leading to larger state machines.

1.6 Notational Conventions

For a good structuring of the mathematical theories we define in the following, we use the following con-
ventions.

Definitions will be given as shown in 1.6.1. They usually contribute new elements to the system model
and/or add constraints between these elements. The definitions can be referred to by using DefinitionName

Definition 1.6.1 (This is a definition)

DefinitionName
extend and use statements referring to other definitions (optional)

introduction of new elements (sets, functions, ...)

Notation:
additional notational abbreviations (optional)

definition of properties that hold

informal, textual explanation (optional)

in “use” and “extend” statements. The first (optional) compartment describes on which definitions the
theory relies. The symbols from the definitions both in the extend and the use statements, can be used and
constrained in the new theory. However, imported symbols are re-exported only if imported through the
extend statement. The extend and use statements define a hierarchy of mathematical theories that constitute
the system model. In rare occasions, we repeat the imported symbols and their signatures, especially if they
are important in the forthcoming definition; we also may specify a context in which the definition is valid.

10

Noteworthy derived properties following from a definition will be stated as a Lemma with a structure similar
to that of a definition. For an example see Lemma 2.5.2.

In addition to the construction of the system model theory, we use examples like depicted in 1.6.2 to
demonstrate how this system model can be used. These examples are not formally part of the system model
and are referenced only by other examples. Note that an example has essentially the same compartments as
a definition.

Example 1.6.2 (This is how an example looks like)

[ExampleName]
import and use statements referring to other definitions, examples (optional)

introduction of new elements (sets, functions, ...)

definition of properties that hold

informal, textual explanation (optional)

We employ some mathematical machinery to simplify definitions. For example, if a value is not necessary
but needs to exist, we use a wildcard ∗. For instance ∀ a : P(a, ∗, ∗) is equal to ∀ a : ∃ y, z : P(a, y, z) for
otherwise unused variables y, z that are existentially quantified at the innermost level. We also assume a
number of container structures, such as P(.) for powerset, Pf (.) for finite powerset, List(.), Stack(.), and
Buffer(.) defined in mathematical terms with appropriate manipulation and selection functions. This basic
mathematics is defined in Appendix A.

1.7 System Model Evolution

This document contains the structural part, control (processes, communication, etc.) and a state-based/interaction
definition for the system model. Parallel to the process of designing the system model, we are using it to
define semantics for some of the most important notational concepts of the UML. Along with this process
of defining UML semantics, we hope to be able to enhance the system model defined in here, to lay a solid
and also generally acceptable semantic basis for the UML.

11

2 Static Part of the System Model

In this chapter, we introduce the fundamental static part of systems in the system model that will serve to
define the semantics of UML models.

The static part is composed of, among other things, some universes of elements, which we assume given
and not fully describe here. We define properties and relationships between those universes. For instance:

• the universe of type names UTYPE,

• the universe of values UVAL,

• a relation CAR that associates type names and their possible values,

• the universe of class names UCLASS, and

• the universe of object identifiers UOID.

Note that we do not further prescribe what “names” are, we take them as primitives.

2.1 Type Names and Their Carrier Sets

A type name identifies a carrier set which contains simple or complex data elements called members or
values of (or associated with) the type name. Members of all type names are gathered in the universe UVAL
of values as given in Definition 2.1.1.

Definition 2.1.1 (Types and values)

Type1
UTYPE
UVAL
CAR : UTYPE → P(UVAL)

∀ u ∈ UTYPE : CAR(u) 6= ∅

UTYPE is the universe of type names
UVAL is the universe of values
CAR maps type names to associated non-empty carrier sets, carrier sets need not be disjoint.

The word “type” has two meanings. On the one hand, a type is a name intuitively understood as a type
of any (object-oriented) programming language, whose members do not necessarily own an identity, and
which is characterized by the operations it has associated. On the other hand, within the system model we
also have a notion of type used to conveniently describe sets of various kinds like, e.g., records and cartesian
products (beyond the UML notion of type).

Although we do not deal with peculiarities of various type systems, strong or weak typing, etc., we outline
basic assumptions on the underlying type system, as we need to map the type information of UML to this
type system.

12

Type names T of this universe UTYPE are normally not detailed further. Although T ∈ UTYPE models a
type, T actually stands for a name, and in short we say type T for it. In that respect, we use a deep embedding
of the type system of UML, by representing it through type names and a universe of values only. By deep
embedding, we mean that we do not map types of the UML to a type system of the underlying mathematical
structure, but explicitly model types as first-class elements.

2.1.1 Variation Point: typeOf

In a very general fashion, we do not enforce carrier sets to be disjoint or values to know to which carrier
set(s) they belong. For certain type names we may even assume that their carrier sets are identical or in
a subset relation. This notion of type allows the subsumption of object types and value types as well as
reference types. We may, however, enforce values (or just members of certain types) to have a single (or
most specific) type, for instance, by means of a function typeOf as defined in 2.1.2 as a partial assignment of
a type for each value. In ordinary object-oriented programming languages, objects usually have an assigned
type (even though there is subtyping, the assigned type is the class the object is instance of), but special
values like Nil usually do not.

Variation Point 2.1.2 (Values having unique types assigned)

[typeOf]
use Type1

typeOf : UVAL ⇀ UTYPE

∀ v ∈ UVAL : v ∈ dom(typeOf)⇒ v ∈ CAR(typeof (v))

typeOf partially assigns a type to values, either because this is the “minimal” type or the type is indeed
encoded in the value.

A variant of a typeOf function, especially suited when no default type is to be assigned to values and the
carrier sets are not disjoint, is the introduction of values paired with their type information (e,T) such that
e ∈ CAR(T). So for instance (3, Int) and (3,Float) can be distinguished.

As an aside, note that, in a proper typing system, families of types, together with their functions, form
algebras with specific signatures. For details see the concept of abstract data types [LEW97].

2.1.2 Typing Examples

The above definitions leave open quite a number of possibilities to characterize types. We will show a few
examples, which are not formal part of the system model. In Example 2.1.3 below, UTYPE denotes a single
type only.

Example 2.1.3 (Types and values: simple UTYPE)

use Type1

UTYPE = {Int}
UVAL = Z
CAR(Int) = Z

UVAL contains integers only. Note that this example contradicts definitions where e.g. Bool is defined as
a member of UTYPE and is thus just an example.

13

Example 2.1.4 shows that the type of a value needs not be unique. This allows, e.g., polymorphic use of
functions on values.

Example 2.1.4 (Types and values: polymorphic values)

use Type1

Int,Float ∈ UTYPE

R ⊆ UVAL
CAR(Float) = R
CAR(Int) = Z ⊆ R

In this example, UTYPE defines types Int and Float, Int values are also Float values.

2.2 Basic Type Names and Type Name Constructors

We assume that a number of basic type names for basic values such as Boolean and integer values are given,
see Definition 2.2.1. We moreover assume the typical operations on values associated with basic type

Definition 2.2.1 (Basic types)

BoolInt
use Type1

Bool, Int ∈ UTYPE
true, false ∈ UVAL

CAR(Bool) = {true, false}
true 6= false
CAR(Int) = Z ⊆ UVAL

UTYPE (UVAL) at least contains Boolean and integer (values).

names such as, e.g., logical connectives or arithmetic operators, but do not detail those within the system
model.

A special type name is Void (see Definition 2.2.2), whose carrier set is a singleton. The value void is
usually needed for giving semantics to procedures or methods with no return value. This is customary in the
semantics of programming languages.

2.2.1 Variation Point: Basic Types

Further basic type names –e.g., Real, Character or String and their subtyping relations, if any– are neither
assumed nor detailed in this system model, but are natural variation points. Actually, the concrete choice
of these types may depend on many factors like, e.g., the hardware platform or the processor. For example
the processor may be restricted to integer arithmetics and overflow errors as well as exceptions might be an
issue to be modeled here.

It is also possible to model untyped systems or systems with no static type system. In this case, we just
introduce the universe of all elements.

14

Definition 2.2.2 (Basic type Void)

Void
use Type1

Void ∈ UTYPE
void ∈ UVAL

CAR(Void) = {void}

void can for example be used to describe that control is transferred without an actual return value being
sent.

It might also be interesting to introduce a notion of equivalence on type names in a form like T1 ≈ T2 to
express that T1 and T2 represent the same carrier sets, i.e., CAR(T1) = CAR(T2).

2.3 Variables

In order to give semantics to attributes of objects, parameters and local variables of method calls and of
executions, we introduce a notion of variable names. (For an account on records, cf. VarAssign in Defini-
tion 2.3.1, see Appendix A.3.)

Definition 2.3.1 (Variables, attributes, parameters)

Variable
use Type1

UVAR
vtype : UVAR→ UTYPE
vsort : UVAR→ P(UVAL)
VarAssign = RECORD(UVAR, vsort)

Notation:
a : T denotes a typed variable and the name and type of the variable are stated explicitly. Note that
vtype(a : T) = T .

∀ v ∈ UVAR : vsort(v) = CAR(vtype(v))

UVAR is the set of all variable names in the system model. For simplicity, we assume that each variable
name has a unique type assigned.
VarAssign is the set of all total and partial variable assignments for variables from UVAR.

2.3.1 Visibility and Unique Variable Names

As specified in Definition 2.3.1, we assume that each variable name has a unique type assigned. In practice, it
would be relatively unhandy if every variable name could only be used once in a program. We then would see
a global namespace and thus not have any hiding concepts in the language. In the system model, however, we
may accept such a restriction, and handle it as follows. Like in ordinary programming languages, variables
shadow each other when a new variable with the same name is introduced in an inner scope. We assume
static binding, thus each variable name can be statically resolved (as opposed to dynamic binding of variables
by which the resolution of a variable name depends not on the environment of its definition but on the

15

environment of its use, and thus variable resolution can only occur at run time). Generally, we assume
that in the modeling languages we deal with, a consistent and model-wide redefinition of variable names
is possible in such a way that each variable is used only once. Then variable shadowing does not occur
and any variable is unique. We may handle that systematically through encoding the place of definition or
the namespace within each variable. Quite the same is done by many compilers anyway. Example 2.3.2
demonstrates how this can be achieved by use of dot notation, i.e., prefixing the namespace, e.g., the class
containing an attribute age : Int or the class and method name for a parameter age : Days of method buy.

Example 2.3.2 (Unique variables distinguished by namespace)

use Type1,Variable,BoolInt

Person.age,Fruit.buy.age ∈ UVAR

vtype(Person.age) = Int
vtype(Fruit.buy.age) = Days

Names from UVAR include syntactically resolvable namespaces.

If necessary, class names can be further qualified with e.g. package name.

2.4 Summary of Types, Variables and Values

The theory built so far constitutes the basic constraints for values, types and variables. The theory Type
(Definition C.1.1 in Appendix C) summarizes these definitions. We build all further theories on them as a
basis.

Figure 2.1 graphically illustrates the theory dependencies. It is an excerpt of Figure 1.2 but additionally
shows the variation points for the current theory.

Type

Type1

VoidVariable BoolInt

typeofRecordType

RecordType1

TupleType

B
A

A B

A Bextends: or

uses:

Legend:

definition:

variation point:

Figure 2.1: Theory Type and its dependencies.

2.4.1 Variation Point: Records

Records can be defined using the following Variation Point 2.4.2, which relies on the definition of mathemat-
ical records in the Appendix A.3. There we already defined the notion of records, but not a type constructor.
Note that records are structurally rather similar to classes, but serve different purposes. We therefore do
not mix those two concepts. Furthermore, the explicit notion of the element types is not necessary, as each
variable is unique and has a unique type assigned via function vtype. The definition of SRec can be found in
Appendix A.3.

16

Variation Point 2.4.1 (Basic structure of record types)

RecordType1
use Type1,Variable

TRec : Pf (UVAR)→ UTYPE
RECORD(UVAR, vsort) ⊆ UVAL

Notation:
Rec{a1 : T1, . . . , an : Tn} is shorthand for the type

TRec({(a1,T1), . . . , (an,Tn)})

∀ i : vtype(ai) = Ti ⇒
CAR(Rec{a1 : T1, . . . , an : Tn}) =

SRec({(a1, . . . , an}, vsort)

The notations used for record values [a1 = v1, . . . , an = vn] and for record types Rec{. . .} provide a
common notation.

Variation Point 2.4.2 (Records including attribute selection)

RecordType
extend RecordType1
use Type1,Variable

TRECORD ⊆ UTYPE
attr : RECORD(UVAR, vsort)→ Pf (UVAR)
attr : TRECORD→ P(UVAR)

TRECORD = {Rec{a1 : T1, . . . , an : Tn} | n ∈ N0, ai ∈ UVAR,Ti ∈ UTYPE}
attr(Rec{a1 : T1, . . . , an : Tn}) = {a1, . . . , an}
attr([a1 = x1, . . . , an = xn]) = {a1, . . . , an}

attr is the list of attribute names.
TRECORD contains all record types.

For access of record variables we define auxiliary functions in Variation Point 2.4.2.
Any list of type names can be composed into record type names. The variables ai are called the attributes

of the record type name. Notice that, as Rec is defined on (finite) sets of pairs, the definition of Rec does not
rely on the ordering of its attributes, thus Rec{a : T, b : S} and Rec{b : S, a : T} describes the same type
name.

2.4.2 Variation Point: Cartesian Products

Some languages also provide cartesian products (also called “cross products” or “tuples”) as types. In
the following Variation Point 2.4.3, we introduce tuple types of arbitrary size. STuple is introduced in
Appendix A.4.

2.5 Class Names and Objects

Given a number of mathematical prerequisites, we now build the notion of objects and classes on top.

17

Variation Point 2.4.3 (Cartesian products)

TupleType
use Type1,Variable

Tuple : List(UTYPE)→ UTYPE
TUPLE(UVAL) ⊆ UVAL

CAR(Tuple[T1, . . . ,Tn]) = STuple[CAR(T1), . . . ,CAR(Tn)]

Tuple[. . .] acts as type constructor.

A class name defines attributes and methods, and may be related (by associations) to other class names.
At first we concentrate on the structure defined for class names. As Definition 2.5.1 shows, each class has a
set of object identifiers and a set of attributes associated. This is sufficient to define the structure of objects
belonging to a class in form of a tuple, consisting of object identifier (this) and the record of all attributes.

Definition 2.5.1 (Classes and instances)

Class
use Type

UCLASS, UOID, INSTANCE
attr : UCLASS→ Pf (UVAR)
oids : UCLASS→ P(UOID)
objects : UCLASS→ P(INSTANCE)
objects : UOID→ P(INSTANCE)
classOf : INSTANCE → UCLASS
classOf : UOID→ UCLASS

∀C ∈ UCLASS, oid ∈ UOID :
objects(oid) = {(oid, r) | r ∈ VarAssign ∧ attr(r) = attr(C)}
objects(C) =

⋃
oid∈oids(C) objects(oid)

∀ oid ∈ oids(C) : classOf (oid) = C
∀ o ∈ objects(C) : classOf (o) = C

UOID contains the universe of object identifiers, UCLASS class names and INSTANCE objects.
attr assigns attributes to each class.
oids assigns a set of object identifiers to a class.
classOf ensures that each object and each identifier knows its class.

Object identifiers uniquely point to objects and we do not have dangling references, so there is a bijection
between object identifiers and objects. This allows to uniquely define the class of an object identifier (except
the below introduced Nil). This means, an object knows its identifier and its class. As a consequence of this
definition each object belongs exactly to one class. For handling of polymorphism, see Section 2.6. This
also ensures that structurally equivalent classes can be distinguished. Furthermore, this “belonging” also
does not vary over time, whereas the object value can vary and a dereferencing from object identifier to the
object value is state dependent.

Note that UOID contains references to all possible objects and, in a similar way, INSTANCE contains
all possible objects. These sets are usually infinite because they resemble the possible existence of objects.
Furthermore, INSTANCE contains all object values thus describing many different object values with the

18

same identifier. At each point of time only a finite subset of objects will actually exist in the data store (see
Section 2.8 below) and there will be at most one instance for any identifier.

In an earlier version, we considered a class itself to be a type [BCR06, BCR07a, BCR07b, CDGR07] and
objects to be values. However, this led to a number of tricky encodings of the special variable this, which is
taken out of the variable assignment and now stored as an extra part of the object. Objects still know about
their identity as well as their class, but this is treated in a special form.

From Definition 2.5.1 we can derive Lemma 2.5.2.

Lemma 2.5.2 (oids is disjoint)

use Class

∀ oid ∈ UOID : oid ∈ oids(classOf (oid))
∀C1 6= C2 ∈ UCLASS : oids(C1) ∩ oids(C2) = ∅
∀(oid, r) ∈ objects(C) : classOf (oid, r) = classOf (oid)

follows from the existence of classOf .

In Definition 2.5.1, we have not yet decided whether classes will be types and if yes what their carrier
sets are, and whether objects or object identifiers are values. This will be done in subsequent definitions.
Objects will not be forced to be values: the identifiers are passed around as argument and handled as values,
not the objects themselves.

Definition 2.5.3 handles access to attributes within an object. While this is not an attribute and thus does
not appear in attr(C), it can however be treated as it were an attribute. This does not enforce to associate a
type with this and we therefore get out of a bunch of problems starting with, e.g., recursive type definitions.

The following Definition 2.5.4 introduces the special identifier Nil and constrains UOID to exactly consist
of object identifiers and INSTANCE objects only.

2.6 Subclassing

Subclassing (also called inheritance) is a basic feature in object-oriented programming. To indicate that
a class C1 inherits from a class C, we introduce binary subclass relation sub on the universe of types in
Definition 2.6.1.

Given the subclass relationship we are also able to precisely define what we understand under the type
of a class: We type the object identifiers (instead of the object themselves). Object identifiers are stored in
variables, can be passed as parameters, etc. So we use these identifiers as values, and leave open whether
objects are also to be treated as values (see below for an appropriate variation point).

The above definition is sufficient to capture subclassing from the structural viewpoint. As an important
consequence, it shows that the type C& has as carrier set all object identifiers belonging to that class or
any subclass. Therefore the carrier sets of subclasses are included in those from superclasses (see derived
lemma, following Definition 2.6.1). This allows to polymorphically store subclass identifiers in places where
superclass identifiers are expected.

However, the definition also leaves quite a few things open for refinement. For instance the binary re-
lation sub is not enforced to be antisymmetric (although no implementation language supports this today).
Furthermore, subclassing is not based on a structural definition: two classes C1 and C2 may have the same
attributes, but still be in no relationship at all.

With this technique on defining a subset relation on object identifiers instead of objects, we get a great
simplification on the type system within the system model. Furthermore, it allows us to redefine attribute
structures in subclasses without an otherwise necessary loss of the substitution principle.

19

Definition 2.5.3 (Attribute access)

Attribute
use Class,Type

this : INSTANCE → UOID
getAttr : INSTANCE × UVAR ⇀ UVAL
attr : INSTANCE → Pf (UVAR)
attr : UOID→ Pf (UVAR)

Notation:
o.this is shorthand for this(o)
o.a is shorthand for getAttr(o, a)

this((oid, r)) = oid
getAttr((oid, r), a) = r.a
attr(oid) = attr(classOf (oid))
attr(o) = attr(classOf (o))

o.this is written in the spirit of attribute selection, but treated differently. this is not an actual attribute of
the class.

Derived lemma:
∀ o ∈ INSTANCE : classOf (o.this) = classOf (o) ∧ o.this ∈ oids(classOf (o))
∀ o ∈ INSTANCE : o.this = oid ⇔ o ∈ objects(oid)

Definition 2.5.4 (Introduction of Nil)

Nil
use Class,Type,Attribute

Nil ∈ UOID

∀C ∈ UCLASS : Nil 6∈ oids(C)
∀ o ∈ INSTANCE : o.this 6= Nil
UOID = {Nil} ∪

⋃
C∈UCLASS oids(C)

INSTANCE =
⋃

C∈UCLASS objects(C)

Nil is a special oid and the only one not associated to a class or an object. UOID and INSTANCE only
consist of identifiers resp. objects.

Derived lemma:
∀ o ∈ INSTANCE : o ∈ objects(classOf (o))
INSTANCE =

⋃
oid∈UOID,oid 6=Nil objects(oid)

Remark: Multiple inheritance allows a class to inherit features from more than one class. While a con-
structive class definition inherits from several classes, from a relational point of view multiple inheritance is
covered by several binary inheritance relationships.

To avoid name conflicts that arise when attributes of different superclasses (or of a superclass and of
the extension) are homonyms, we simply assume that all attribute definitions introduce different names.

20

Definition 2.6.1 (Subclassing)

Subclassing
use Class,Nil,Type

sub ⊆ UCLASS× UCLASS
.& : UCLASS→ UTYPE

UOID ⊆ UVAL

transitive(sub) ∧ reflexive(sub)
∀C ∈ UCLASS : CAR(C&) = {Nil} ∪

⋃
C1 sub C oids(C1)

sub is the transitive and reflexive subclass relation.
Type C& contains all object identifiers that belong to class C or any of its subclasses.

Derived lemma:
∀C ∈ UCLASS : Nil ∈ CAR(C&) ∧ oids(C) ⊆ CAR(C&)
UOID = ∪C∈UCLASSCAR(C&)
∀C1 sub C : CAR(C&

1) ⊆ CAR(C&)

Semantically, this convention means no restriction because attribute access is always resolved statically and
there is no dynamic lookup for attributes.

2.7 Summary of Classes and Objects

We summarize the theory built so far, defining objects, identifiers and classes in theory Object (Defini-
tion C.1.2).

Figure 2.2 illustrates the theory dependencies and variation points.

Object Nil

Class

Attribute

Subclassing

LiskovPrinciple AntisymmetricSub

ValueObjects Generics

Type

Figure 2.2: Theory Object and its dependencies.

As mentioned earlier, quite a number of variation points arise to extend and specialize the theory Object.

2.7.1 Variation Point: Subclassing Respects Structure

From the definition, we can see that a subclass can have a different attribute structure. This is methodically
somewhat questionable and often cannot be reflected in an implementation anyway. Therefore, the con-
straints may be refined as a variation point. The substitution principle [LW94] enforces object identifiers of
subclass C1 to be special cases of class C. That can easily be enforced by introducing a set inclusion on
attributes for classes in subclass relation as given in Variation Point 2.7.1.

21

Variation Point 2.7.1 (Subclassing respects structure)

[LiskovPrinciple]
use Object

∀C1,C2 ∈ UCLASS : C1 sub C2 ⇒ attr(C2) ⊆ attr(C1)

It is enough to enforce attributes being included, as they exhibit the same types by Definition 2.3.1.

2.7.2 Variation Point: Antisymmetric Subclassing

Variation Point 2.7.2 enforces the subclass relation to be antisymmetric which implies that there are no
inheritance cycles.

Variation Point 2.7.2 (Antisymmetric subclass relation)

[AntisymmetricSub]
use Object

∀C1,C2 ∈ UCLASS : C1 sub C2 ∧ C2 sub C1 ⇒ C1 = C2

2.7.3 Dynamic Reclassification of Objects

Notice that an object may be regarded as instance of more than one class along the subtyping hierarchy, even
though its object identifier is uniquely tied to a fixed, unchangeable class. Still an object may be dynamically
reclassified by its context according to the given subclass hierarchy. However, this only changes the external
viewpoint on an object, but neither its internal structure (attributes) nor its behavior.

In UML 2.0 dynamic reclassification for classes is introduced in a very general way. The system model
does not reflect this capability of reclassification, because we assume that this concept should be mapped to
the system model through introduction of additional infrastructure. For instance, possible implementations
of dynamic reclassification could introduce an additional superclass that contains all attributes and a flag to
indicate which behavior is currently active. Even more flexibility becomes possible when change of dynamic
behavior is realized through delegation of behavior to other objects.

2.7.4 Variation Point: Objects are Values

We have decided not to enforce objects to be values because there was no necessity. However, if “value
objects” are desired that are, e.g., passed around directly instead of their identifiers, then an corresponding
variation may be defined.

During our considerations we found it clearer to explicitly distinguish between a class name and the
associated type it induces: A class Person, e.g., induces the type Person& of object identifiers of that class.
Now we also add the type Person∗ of objects.

We use .& and .∗ as type constructors to exhibit similarities to C++, but use them as suffix to avoid
confusion. Furthermore, with this approach, we do not get a recursive type definition for types C∗ and C&

since they formally are not related to each other. This reflects implementation very straightforwardly, as in
there we also distinguish object identifiers quite clearly from the objects themselves.

Note that we can derive that there is no inclusion of object sets in this variation point and thus no
substitution of objects. However, another variation point could make that differently. Also note that

22

Variation Point 2.7.3 (Objects are values)

[ValueObjects]
use Object

INSTANCES ⊆ UVAL
.∗ : UCLASS→ UTYPE

∀C ∈ UCLASS : CAR(C∗) = objects(C)

C∗ is a type denoting the objects of class C.

Derived lemma:
∀C1 6= C2 : CAR(C∗1) ∩ CAR(C∗2) = ∅

when typeOf was defined like in Variation Point 2.1.2, we have: classOf (oid)& = typeOf (oid) and
classOf (obj)∗ = typeOf (o).

2.7.5 Variation Point: Generic Type System

Further constructs for building type names are possible. For instance, an array type or a subtyping structure
beyond the subclassing concept inherent to object orientation may be available. We also did not deal either
with parametric polymorphism or generic classes within the system model, which was introduced in Java
1.5 in form of instantiable templates. A type system is an enhanced syntactic concept and can therefore be
handled together with the concrete syntax of the models.

Variation Point 2.7.4 describes a simplified version of generics, where constraints on the classes that
can be instantiated are not described. We model “generic classes” not directly as classes, but as functions
yielding classes when instantiated.

Variation Point 2.7.4 (A sketch for Generic Classes)

[Generics]
use Object

GENERICS
parcount : GENERICS→ N
attr : GENERICS→ Pf (UVAR)
build : GENERICS× List(UTYPE) ⇀ UCLASS

Notation:
parcount(C) = n⇒ C(T1, . . . ,Tn) is the class build(C, [T1, . . . ,Tn])

attr(C(T1, . . . ,Tn)) = attr(C)

This is a sketch how to introduce generics. (More definitions are necessary.)

Note that in case of generics, attribute names may have different types in different contexts. This can
be handled by attaching type names to variables and actually leads to a slightly more involved definition of
attr(C) than stated in Variation Point 2.7.4.

23

2.8 Data Store Structure

In the system model, we abstract away a number of details, such as storage layout and physical distribution.
We use an abstract global store to denote the state of an object system. Even if there is no such concept
in the real, possibly distributed system, we can conceptually model the system that way by organizing all
instances in this single global store. We also allow interleaving, as well as concurrent activities, as can be
seen in the control part of the system model in Chapter 3.

Intuitively, the data store models the data state of a system at a certain point in time. Normally, at each
point of time the store contains real objects for a finite subset of the universe UOID of all object identifiers.
In Chapter 5 we will, however, see that the data store is not enough to describe the system, but a control
store and an event store need to be added. In these stores time progress is modeled by state transitions of the
overall state machine.

A data store is a snapshot of the data state of a running system. Definition 2.8.1 introduces a stores as
a set of objects assigned to their identifiers. As an important restriction on DataStore, we enforce that the
mapping assigns an object o to identifier oid only if this is the identifier of that object o.this.

Definition 2.8.1 (The data store)

DataStore1
use Object

DataStore ⊆ (UOID→ INSTANCE)
oids : DataStore→ P(UOID)

∀ ds ∈ DataStore : oids(ds) = dom(ds)
∀ o ∈ UOID, ds ∈ DataStore : ds(o).this = o

DataStore is the set of snapshot values.
oids is the set of existing objects, given a data store.

Derived lemma:
∀ ds ∈ DataStore : Nil 6∈ oids(ds)

It is convenient to have a number of retrieval and update functions for the data store at hand, as given in
Definition 2.8.2. They basically deal with lookup and change of attribute values as well as “creating” a new
object in the store.

Again various restrictions on the use of retrieval and update functions apply. This involves the use of
values of appropriate type, attributes that actually exist in a class, etc. However, we refrain from defining
these specifications here.

At each point in time, i.e., in each state of the state machine, when an instance exists, we assume that its
attributes are present and their values are defined (including Nil), but it is not necessarily the case that we do
know about these values. They may be left underspecified. In particular it may be that, after creation of an
instance, its attributes still need to be initialized, i.e., come into a known (and thus well-defined) state. Note
that this is a usual modeling technique used, e.g., in verification systems to avoid an explicit handling of a
pseudo-value “undefined” [NPW02]. It also resembles reality, e.g., when an uninitialized variable of type
int is accessed, we do know that it contains an integer, but we do not have a clue which one it is.

24

Definition 2.8.2 (DataStore Infrastructure)

DataStore
extend Object;
extend DataStore1

val : DataStore× UOID× UVAR ⇀ UVAL
setval : DataStore× UOID× UVAR× UVAL ⇀ DataStore
addobj : DataStore× INSTANCE → DataStore

Notation:
ds(oid.at) is shorthand for val(ds, oid, at)
ds[oid.at = v] is shorthand for setval(oid, at, v)

∀ ds ∈ DataStore, oid ∈ oids(ds), at ∈ attr(oid), v ∈ CAR(vtype(at))) :
val(ds, oid, at) = ds(oid).at
setval(ds, oid, at, v) = ds⊕ [oid = (oid, π2(ds(oid))⊕ [at = v])]
o.this 6∈ oids(ds)⇒ addobj(ds, o) = ds⊕ [o.this = o]

val retrieves the value for a given object and attribute.
setval updates a value for a given object and attribute.
addobj adds a new object.

2.8.1 Variation Point: Finite Object System

The elements of DataStore are usually partial mappings. However, the system model does not enforce the
mapping to be finite in any snapshot of the computation. As, however, in practical implementations this is
usually the case, the following Variation Point 2.8.3 is introduced.

Variation Point 2.8.3 (Set of objects is finite at every time)

[FiniteObjectSet]
use DataStore1

∀ ds ∈ DataStore : #(oids(ds)) ∈ N

2.8.2 Variation Point: Locations

Although it is error prone to use locations, they are common in some programming languages in order to
pass around pointers to parts of the data store as first-class values. Locations allow reading and modifying
the space they refer to. We demonstrate locations as an extension to the basic data structures in Variation
Point 2.8.4.

Explicit introduction of locations also allows modeling other effects such as shared variables between
objects and “futures” in order to return a value to a sending object in a distributed message passing envi-
ronment while both are operating concurrently. However, the use of locations as shared variables needs
to be properly defined or at best completely avoided as it spoils compositionality of objects as defined in
Chapter 5.

We denote by Loc T the type name whose associated values are locations for values associated with type
name T . Note that we allow arbitrary combinations of types such as Loc Loc T . By ULOC ⊆ UVAL locations
can be passed around and stored like ordinary values. Both dereferencing of the location to the contained

25

Variation Point 2.8.4 (Locations as pointers to mutable store)

[Locations]
use DataStore

loc : UOID× UVAR ⇀ ULOC
ULOC ⊆ UVAL
Loc : UTYPE → UTYPE
val : DataStore× ULOC ⇀ UVAL
setval : DataStore× ULOC × UVAL ⇀ DataStore

∀T ∈ UTYPE : CAR(Loc T) ⊆ ULOC
∀ ds ∈ DataStore, oid ∈ oids(ds), at ∈ attr(oid), v ∈ CAR(vtype(at))) :

(oid, at) ∈ dom(loc)⇒
val(ds, loc(oid, at)) = val(ds, oid, at)
setval(ds, loc(oid, at), v) = setval(ds, oid, at, v)
typeOf (loc(oid, at)) = Loc(vtype(at))

Notation:
ds(l) is shorthand for val(ds, l)
ds[l = val] is shorthand for setval(l, val)

ULOC is the universe of locations.
Loc T denotes the type of locations that store data of type T .
val and setval again deal with retrieving and setting of a value.

value and updating to an new value (“get” and “set”) is done in the context of a data store. However, further
locations for local variables, parameters or places in arrays, etc., are possible.

By construction and definition loc is injective. Basically, it can be understood as a wrapper encoding
object identifier and attribute name into a unique location (address). This close relation can be seen in
structurally rather equivalent definitions of the val and setval functions.

The partiality of the wrapping function loc allows to control which attributes are locations and therefore
possibly accessed from outside and which attributes are safe.

As a further variation point, we could introduce a comparison of locations or even operations to allow
nasty things such as pointer arithmetic.

2.8.3 Variation Point: Reference Types

In the core of the system model, we also do not need references. In an earlier version [BCR06, BCR07a,
BCR07b], we had defined object identifiers based on references, because they are essentially similar con-
cepts. In this version, object identifiers are defined directly. If desired, references to other types can be
included as well.

A reference is either Nil or an identifier for one value in the carrier set of a given type name. Let T be an
arbitrary type name. Then Ref T is a type name whose carrier set consists of references to values of type T
and the distinguished reference Nil.

Given any type name T , the carrier set of type name Ref T has a rather limited set of operations. Ref-
erences basically allow for comparison (i.e., test for equality) and provide the special reference Nil. By
dereferencing we obtain the actual value from a reference. If values change over time, dereferencing is state
dependent and thus is basically equivalent to the location concept of above. If we assume that the referenced
value is immutable, then we can define references as given in Variation Point 2.8.5.

26

Variation Point 2.8.5 (Reference types)

[References]
use DataStore

Ref : UTYPE → UTYPE
deref : CAR(Ref T) ⇀ CAR(T) for all T ∈ UTYPE

∀T ∈ UTYPE : Nil ∈ CAR(Ref T)
∀T ∈ UTYPE : dom(deref) = CAR(Ref T) \ {Nil}

Ref T contains references with no additional internal structure.

Given a reference r ∈ CAR(Ref T), its dereference deref (r) ∈ CAR(T) is defined only if r 6= Nil. Note
that not every value needs to have a reference on it and furthermore, there may be many references to the
same value that nevertheless can be distinguished (as they are values on their own).

Note that locations and references are really similar concepts, but serve different purposes. A reference
points to a value and this relation is static, i.e., independent of the state of the system. A location contains a
value (or its content) and is dependent on the state.

2.9 Class Variables and Constants

While attributes are by far the most commonly used elements to store values, there are two further types of
elements present in an object-oriented setting.

Constants on one hand are values with a name, such that the name can be used instead of the value. We
do not need to represent constants explicitly in the system model: Their associated values are present in the
universe of values and the mapping of names to values as well as their visibility is not part of the system
model but part of the mapping from UML to the system model.

A second concept that we have not explicitly represented so far is the concept of static attributes. These
are attributes that can be regarded as shared between all objects of the class. Indeed they exist independently
of any object, but can only be accessed from within a limited scope. As the system model does not deal
with visibility of a static attribute, we just need to identify a place where to store such an attribute. In the
following Variation Point 2.9.1, we do this by introducing a special object that plays the role of a static,
singleton instance hosting all static attributes. Note that this is, again, just a conceptual model and by no
means intended to be implemented that way. A more modular implementation could introduce such a static
object for each class separately.

Still, we believe that static attributes should be avoided anyway since they may lead to uncontrolled side
effects that degrade compositionality.

2.10 Associations

One of the core concepts of UML are associations. Associations are relations between classes; and links,
which can be regarded as instances of associations, are the corresponding relations between object identi-
fiers at runtime. While associations are mostly binary, they may be of any arity, in addition they may be
qualified in various ways and may have additional attributes on their own. Furthermore, an association can
be “owned” by one or more of the participating objects/classes or can stand on its own, not owned by any
of the related objects. In an implementation a basic mechanism for managing those relations is to use direct
links or Collection classes but there are other possibilities as well. To semantically capture different variants
of realizations of associations, we use a generalized, extensible approach: Retrieval functions extract links

27

Variation Point 2.9.1 (Modeling static attributes)

[StaticAttributes]
use DataStore

StaticC ∈ UCLASS
staticOid ∈ UOID
StaticAttr ⊆ UVAR
val : DataStore× StaticAttr ⇀ UVAL

oids(StaticC) = {staticOid}
∀ ds ∈ DataStore : staticOid ∈ oids(ds)
attr(StaticC) = StaticAttr
val(ds, at) = val(ds, staticOid, at)

The only instance of Class StaticC has identifier staticOid and stores a value for each attribute of
StaticAttr.

from the store. We allow for a variety of realizations of these functions. This approach is very flexible as it,
on the one hand, abstracts away from the owner of associations as well as from how associations are stored
and, on the other hand, does not restrict possible forms of an association. As a big disadvantage of this
approach, we cannot capture all forms of associations in one uniform characterization, but need to provide
a number of standard patterns that cover the most important cases. If no standard case applies, e.g., for a
new stereotype for associations, then the stereotype developer has to describe his/her interpretation of the
stereotype directly in the terms of the system model. We demonstrate this approach by defining variants of
binary associations below.

According to Definition 2.10.1, any association has a name R, a signature given by a list of classes
[C1, . . . ,Cn], possibly additional values of that association extraVals(R) and a relation retrieval function
relOf (R).

Note that the use of CAR(C&
i) includes relations between object identifiers of subclasses of Ci which is

usually intended by associations, but would not be covered if we used oids(Ci) directly.
Also note that with this approach it is possible to model qualified associations by interpreting one (or

more) of the additional attributes as the qualifier as well as to model non-unique associations by introducing
a value as distinguishing flag. Some examples for association mappings are given below.

In UML class diagrams, associations usually define certain restrictions on their changeability. This can
only be stated if sequences of DataStores are used to compare behavior over time. Thus, the semantics of a
class diagram cannot fully be defined on one snapshot of the DataStore, but needs to compare two snapshots
from different times.

The retrieval function relOf depends on the concrete realization of the association. Even after quite
a number of years of studying formalizations of object orientation, there is so far not a really satisfactory
approach describing all variants of association implementations. Therefore, we provide this abstract function
and impose some properties on the function without discussing the internal storage structure. The only
decision we made so far is that associations are somehow contained within the store, i.e., they are somehow
part of objects and association relations do not extend the store. This is pretty much in the spirit of the
system model where higher-level concepts are explained using lower-level concepts. In order to retrieve the
links of an association, the state of multiple objects may have to be examined. From the viewpoint of a
single object, this is not possible since it only has access to its own state. Hence, we assume that links may
be retrieved using an “API”, i.e., special methods that can be called by an object and that return the links.

With classes we assign a list of classes to an association because the order of the classes is relevant. For
example, think of a reflexive 1-to-*-association like “parent-child”.

28

Definition 2.10.1 (Basic definitions for associations)

Association
extend DataStore

UASSOC
classes : UASSOC→ List(UCLASS)
extraVals : UASSOC→ P(UVAL)
relOf : UASSOC × DataStore→ P(UVAL× UVAL)

∀R ∈ UASSOC, i,Ci ∈ UCLASS, ds ∈ DataStore :
classes(R) = {C1, . . . ,Cn} ⇒

relOf (R, ds) ⊆ (CAR(C&
1)× . . .× CAR(C&

i))× extraVals(R)

UASSOC is the universe of association names,
classes describes which classes it relates,
extraVals describes the possible set of distinguishing values, and
relOf is the retrieval function to derive the actual links for an n-ary association based on the current store.

Note that we do not constrain the relationship between UASSOC and UTYPE. In particular one might
regard each association manifesting itself as type (UASSOC ⊆ UTYPE) or only a few associations being
realized as types. This freedom allows modeling simple relations as attributes only, without having to attach
a type to them within the system model.

We also do not constrain the set of attached values extraVals, but would assume that in many associations,
this set either contains a single value only (which then can be neglected as unimportant) or values of a
certain type. In particular, this type may be a variable assignment allowing to model any set of attributes to
be added to the relation.

Subsequently, we define various functions that help to define associations quite easily as well as a number
of variation points constraining associations. These functions cover standard situations for associations, but
there will probably be much more “standard” implementations.

2.10.1 Variation Point: Simple Associations Only

Variation Point 2.10.2 constrains the possible set of implementations in a number of ways. Each of the
constraints may be imposed individually.

Variation Point 2.10.2 (Simplified associations)

[SimplAssociation]
use Association

∀R ∈ UASSOC, ds ∈ DataStore : #relOf (R, ds) ∈ N

∀R ∈ UASSOC : #extraVals(R) = 1

∀R ∈ UASSOC : #classes(R) = 2

∀R ∈ UASSOC, ds ∈ DataStore, oid ∈ UOID :
#{(oid1, oid2, x) ∈ relOf (R, ds) | oid = oid1} = 1

These constraints restrict to:

• finite sets of links for an association only;

29

• no extra attributes for associations;

• all associations are binary;

• all associations are 1-to-* or even 1-to-1, but not *-to-*.

2.10.2 Variation Point: Plain Binary Associations

Many associations are binary without any additional attributes. For those we can use functions given in
Variation Point 2.10.3. Besides the definition functions such as binaryAssoc we also provide retrieval func-
tions for the actual relation such as binaryRelOf with appropriate signature and additional machinery to
conveniently handle ordinary binary associations.

Variation Point 2.10.3 (Binary associations)

[BinaryAssociation]
use Association

binaryAssoc : UASSOC × UCLASS× UCLASS→ Bool
binaryRelOf : UASSOC × DataStore→ P(UOID× UOID)
sources, destinations : UASSOC × DataStore× UOID→ P(UOID)

∀R ∈ UASSOC,C1,C2 ∈ UCLASS, ds ∈ DataStore :
binaryAssoc(R,C1,C2)⇒
classes(R) = [C1,C2] ∧
#extraVals(R) = 1 ∧
binaryRelOf (R, ds) = {(oid1, oid2) | (oid1, oid2, ∗) ∈ relOf (R, ds)} ∧
sources(R, ds, oid1) = {oid2 | (oid1, oid2, ∗) ∈ binaryRelOf (R, ds)} ∧
destinations(R, ds, oid2) = {oid1 | (oid1, oid2, ∗) ∈ binaryRelOf (R, ds)}

binaryAssocMultis : UASSOC × UCLASS× UCLASS× P(N)× P(N)→ Bool
binaryAssoc1to∗ : UASSOC × UCLASS× UCLASS→ Bool
binaryAssoc1to(0−1) : UASSOC × UCLASS× UCLASS→ Bool
binaryAssoc1to1 : UASSOC × UCLASS× UCLASS→ Bool

∀R ∈ UASSOC,Ci ∈ UCLASS,Ni ⊆ N, ds ∈ DataStore :
binaryAssocMultis(R,C1,C2,N1,N2)⇒ binaryAssoc(R,C1,C2)∧
∀ o1 ∈ CAR(C&

1), o2 ∈ CAR(C&
2) :

#destinations(R, ds, o1) ∈ N1 ∧#sources(R, ds, o2) ∈ N2

binaryAssoc1to∗(R,C1,C2)⇒ binaryAssocMultis(R,C1,C2, {1},N)
binaryAssoc1to(0−1)(R,C1,C2)⇒ binaryAssocMultis(R,C1,C2, {1}, {0, 1})
binaryAssoc1to1(R,C1,C2)⇒ binaryAssocMultis(R,C1,C2, {1}, {1})

binaryAssoc handles binary functions in general.

With binaryRelOf we can retrieve the overall relation (without the then unnecessary extra value), and with
sources and destinations we can retrieve the objects a specific object is linked with. With binaryAssocMultis
specific restrictions for multiplicities apply.

2.10.3 Variation Point: Realization Techniques for Binary Associations

Retrieval functions are not further specified yet because they may have quite a number of different realiza-
tions. For clarification, we define some standard functions below, covering standard cases and provide them

30

as variation points. However, more variations are possible.
Variation Point 2.10.4 realizes a binary association through an attribute.

Variation Point 2.10.4 (A realization for associations as attributes)

[AttributeAssociation]
use Association,BinaryAssociation

attributeAssoc : UASSOC × UCLASS× UCLASS× UVAR→ Bool

∀R ∈ UASSOC,Ci ∈ UCLASS, ds ∈ DataStore, at ∈ UVAR :
attributeAssoc(R,C1,C2, at)⇒

binaryAssoc(R,C1,C2) ∧ at ∈ attr(C1) ∧ vtype(at) = C2∧
binaryRelOf (R, ds) = {(o1, ds(o1.at)) | o1 ∈ CAR(C&

1) ∩ oids(ds)}

C1 C2roleC
1

C1 C2

roleC: C2

Model:

Realized through:

Binary association realized through an attribute.

Derived:
destinations(R, ds, o1) = ds(o1.at)

Variation Point 2.10.5 for a binary *-to-*-association works quite similarly for n-ary associations of ar-
bitrary size, and uses an additional class whose objects describe each one link. Note that although this is
a correct realization, inspired by relational database techniques, it may not be the most efficient one with
respect to navigation.

The above two definitions demonstrate that the issue of owning a link can quite generally be covered
through the use of retrieval functions as given in 2.10.1. In the first definition, the objects own the links, in
the second, the links are separated from the objects. Of course also combinations are possible, as shown in
the following third Variation Point 2.10.6.

If collections are used in an implementation, the corresponding retrieval functions should be an abstraction
of what collections actually store. Note that these functions are mathematical constructs that make the
intentions of collection classes explicit but need not be actually implemented.

It is important to note that the effect of, e.g., an action on the links of an association can be described by
using the retrieval function, without having to look at the actual representation in the system model. It is not
even necessary to provide such a representation; it suffices to know there is one. This principle comes from
abstract data types in algebra where the changes on data structures are also purely defined on the effect on
access functions.

2.10.4 Variation Point: Qualified and Ordered Binary Associations

The above given retrieval functions neither regard ordering nor qualified associations. An appropriate exten-
sion for qualification of associations and ordering is given by the more detailed retrieval function in 2.10.7.

Please note that ordering is to some extent a property that is defined over time. Many properties of

31

Variation Point 2.10.5 (A realization for associations using association classes)

[MtoMAssociation]
use Association,BinaryAssociation

mtomAssoc : UASSOC × UCLASS× UCLASS
× (UCLASS× UVAR× UVAR)→ Bool

∀R ∈ UASSOC,Ci,M ∈ UCLASS, ds ∈ DataStore, a, b ∈ UVAR :
mtomAssoc(R,C1,C2, (M, a, b))⇒

binaryAssoc(R,C1,C2)∧
a, b ∈ attr(M) ∧ vtype(a) = C1 ∧ vtype(b) = C2∧
binaryRelOf (R, ds) = {(ds(m.a), ds(m.b)) | m ∈ CAR(M&) ∩ oids(ds)}

C1 C2
M

C1 C2

Model:

Realized through:
M

a: C1

b: C2

**

Binary *-to-*-association realized through extra class M.

Derived:
destinations(R, ds, ds(m, a)) = {ds(m.b)}
sources(R, ds, ds(m, b)) = {ds(m.a)}

ordered specifications cannot be described on one snapshot only but are described through the operators
that are allowed on ordered associations, e.g., retrieving elements at a position, deleting, inserting and other
list-based operations. Thus, for ordering we cannot define much more than the signature at the moment.

For general qualified associations this situation is similar. However, one case of qualification results form
the use of an attribute of the linked-to class as qualifier. We provide a specific definition for this case.

In the qualified case, we retrieve triples, where two object identifiers define the link and the value in the
middle defines the qualifier. If the qualifier is an attribute at of the linked-to class, then attrqualifiedAssoc
from Variation Point 2.10.8 can be used. The qualifier identifies at most one object, a generalization to
arbitrary multiplicities would easily be possible.

2.11 Summary of the Data State of the System Model

All elements of this chapter together provide a description of the data state of the system. Definition C.1.3
contains the full theory Data of the data store and associations that model the data state of the system.

Figure 2.3 illustrates the theory dependencies and variation points.

32

Variation Point 2.10.6 (A realization for associations using collections)

[MtoOneAssociation]
use Association,BinaryAssociation,AttributeAssociation

mtooneCollectionAssoc : UASSOC × UCLASS× UCLASS
× (UVAR× UVAR)→ Bool

∀R ∈ UASSOC,Ci ∈ UCLASS, ds ∈ DataStore, a, b ∈ UVAR :
mtooneCollectionAssoc(R,C1,C2, (a, b))⇒

attributeAssoc(R,C1,C2, a)∧
b ∈ attr(C2) ∧ vtype(b) sub Collection(C2)∧
∀ o2 ∈ oids(ds) ∩ CAR(C&

2) : collectionValues(ds(o2.b)) = sources(R, ds, o2);

C1 C2

C1 C2

Model:

Realized through:

1*

a: C2 b: Collection(C2)

ab

This binary *-to-1-association is realized redundantly.

Variation Point 2.10.7 (Qualified and ordered association)

[QualifiedAssociation]
use Association,BinaryAssociation

orderedAssoc : UASSOC × UCLASS× UCLASS→ Bool
orderedRelOf : UASSOC × DataStore→ (UOID→ List(UOID))

∀R ∈ UASSOC,Ci ∈ UCLASS, ds ∈ DataStore :
orderedAssoc(R,C1,C2)⇒ binaryAssoc(R,C1,C2)∧

binaryRelOf (R, ds) = {(oid1, oid2) | oid2 ∈ orderedRelOf (R, ds)(oid1)}

qualifiedAssoc : UASSOC × UCLASS× UCLASS→ Bool
qualifiedRelOf : UASSOC × DataStore→ (UOID× UVAL× UOID)

∀R ∈ UASSOC,Ci ∈ UCLASS, ds ∈ DataStore :
qualifiedAssoc(R,C1,C2)⇒ binaryAssoc(R,C1,C2)∧

binaryRelOf (R, ds) = {(oid1, oid2) | (oid1, q, oid2) ∈ qualifiedRelOf (R, ds)}∧
∀ oid1 ∈ UOID, q ∈ UVAL : ∃≤1 oid2 : (oid1, q, oid2) ∈ qualifiedRelOf (R, ds)

2.12 An Example for the Structural System Model

Having defined quite a number of modular parts of the system model, it is now time to populate this structural
part of the system model with a nontrivial example.

Note that the example basically maps some given UML models into maths. It necessarily is less designed
for compactness and therefore not very intuitive to read. But on the one hand it is precise and on the other
not UML users but language and semantics developers are meant to look at it.

33

Variation Point 2.10.8 (Qualified Associations using Attributes)

[AttrQualifiedAssociation]
use Association,BinaryAssociation,QualifiedAssociation

attrqualifiedAssoc : UASSOC × UCLASS× UCLASS× UVAR→ Bool

∀R ∈ UASSOC,Ci ∈ UCLASS, ds ∈ DataStore :
attrqualifiedAssoc(R,C1,C2, at)⇒ qualifiedAssoc(R,C1,C2)∧
∀(oid1, q, oid2) ∈ qualifiedRelOf (R, ds) : q = ds.oid2.at

Object

Data

DataStore1

DataStore

Association

FiniteObjectStore

Locations

References

StaticAttributes

SimplAssociation

BinaryAssociation

AttributeAssociation

MtoMAssociation

Mto1Association

QualifiedAssociationAttrQualifiedAssociation

Figure 2.3: Theory Data and its dependencies.

Figure 2.4 illustrates the system model example as a UML class diagram. In part 1 of the formalization
(Example 2.12.1), we can observe the following:

• A primitive type String is introduced.

• The attributes and their corresponding types are defined.

• The classes from Figure 2.4 are elements of UCLASS. The function attr assigns the right attributes
to each class. Object identifiers are assumed to consist of the name of the class and a unique id. The
abstract class Entry does not have object identifiers on its own since it cannot be instantiated.

• The subclassing relation is defined and it becomes clear that instances of Meeting and Appointment
can be used whenever an Entry is expected since the carrier set of the type Entry& contains at least all
identifiers for Meeting and Appointment.

Example 2.12.2 continues the example by formalizing the given associations:

• Most of the associations are assumed to be realized as attributes. This is detailed only for association
owns since the rest is defined analogously.

• The anonymous association between User and Meeting is resolved by introducing a name Aparticipants
for it. It demonstrates the variation point for many-to-many associations. An association class
Part2Meet and attributes corresponding to the association ends are defined. The predicate mtomAssoc
ensures that the realization has the desired properties. Both names Aparticipants and Part2Meet are

34

Calendar

<<abstract>>
Entry

current

Meeting

User

String uname

Appointment

bool business

DateTime

int date
int time

start end

{ordered}
*

owner

organizer
participants *

CD

*

entries

1
owns

Figure 2.4: Example structure of a system, modeled as a UML class diagram

introduced as fresh names. Whether they remain anonymous or can be used by the developer, to de-
scribe further properties is another, yet open variation point. In case, e.g., class Part2Meet is to be
exposed to developers, there need to be clear rules how to build that name from the association or the
associated class names (which is not the case in this example).

• The ordered association Aentries combines several variation points. First, it is a many-to-many as-
sociation realized as another (potentially anonymous) association class Cal2Entries. Then, it is also
a binary association where multiplicities are restricted to 1-to-many. And finally, it is an ordered
association where the relation orderedRelOf is given in such a way that the list is sorted by start date.

We furthermore demonstrate how the data store might look like in a system run, providing a snapshot of
the data state of the system. Figure 2.5 shows the snapshot as a UML object diagram.

In Example 2.12.3, an example data store for the object diagram of Figure 2.5 is given. Most links have
become attribute values of the corresponding classes, e.g., the owner attribute of the object of class Calendar
points to the user instance oidUser

1 .
The link entry1 from the Calendar object to the Meeting object is represented in the store as an in-

stance of class Cal2Entries, connecting the objects through appropriate attribute values. Similarly, the links
participant1 and participant2 are realized by two objects of class Part2Meet.

35

Example 2.12.1 (Structure example, part 1)

extend Data

// Additional primitive types:
String ∈ UTYPE

// Variables:
date, time, uname, business ∈ UVAR
vtype(date) = vtype(time) = int
vtype(uname) = String
vtype(business) = bool

// Classes and object identifiers:
Calendar,DateTime,User,Entry,Meeting,Appointment ∈ UCLASS
date, time ∈ attr(DateTime)
uname ∈ attr(User)
business ∈ attr(Appointment)
// A definition for oids:
oids(Entry) = ∅
∀ c ∈ {Calendar,DateTime,User,Meeting,Appointment} :

oids(c) = {oidc
i | i ∈ N}

∀ oidc
i ∈ oids(c) : classOf (oidc

i) = c

// Subclassing:
(Meeting,Entry) ∈ sub
(Appointment,Entry) ∈ sub
CAR(Entry&) ⊆ oids(Meeting) ∪ oids(Appointment)

This is a system model based definition of the class diagram (part 1).

:Calendar
current

:User

uname = “Jo“

:DateTime

date = 123
time = 456

end

owner

organizer

participant1

OD

entry1

:Meeting

:User

uname = “Jim“

participant2
:DateTime

date = 345
time = 678

:DateTime

date = 345
time = 567

start

owns

Figure 2.5: Example data snapshots of a system model as a UML object diagram.

36

Example 2.12.2 (Structure example, part 2)

extend Data

// Association owns:
owns ∈ UASSOC
owner ∈ UVAR
attributeAssoc(Aowner,Calendar,User, owner)

// Associations for current, start, end, organizer defined analogously

// Association participants:
Aparticipants ∈ UASSOC
Part2Meet ∈ UCLASS
participants,meetings ∈ UVAR
mtomAssoc(Aparticipants,User,Meeting, (Part2Meet,meetings, participants))

// Association entries:
Aentries ∈ UASSOC
Cal2Entries ∈ UCLASS
cal, entries ∈ UVAR
mtomAssoc(Aentries,Calendar,Entry, (Cal2Entries, cal, entries))
binaryAssoc1to∗(Aentries,Calendar,Entry)
orderedAssoc(Aentries,Calendar,Entry) where
∀ ds ∈ DataStore, oid1 ∈ CAR(Calendar&) ∩ oids(ds) :

orderedRelOf (Aentries, ds)(oid1) = L∧
∀ oid2 ∈ L :
(oid1, oid2) ∈ binaryRelOf (Aentries, ds)∧
∀ i :

di = ds(ds(L[i].start).date)∧
ti = ds(ds(L[i].start).time)∧
(di < di+1) ∨ (di = di+1 ∧ ti ≤ ti+1)

This is a system model based definition of the class diagram (part 2).

37

Example 2.12.3 (Example data store)

extend Data

ds = [
oidCalendar

1 =
(oidCalendar

1 , [owner = oidUser
1 , current = oidDateTime

1]),
oidDateTime

1 =
(oidDateTime

1 , [date = 123, time = 456]),
oidUser

1 =
(oidUser

1 , [name = “Jo“]),
oidUser

2 =
(oidUser

2 , [name = “Jim“]),
oidMeeting

1 =
(oidMeeting

1 , [organizer = oidUser
1 ,

start = oidDateTime
2 , end = oidDateTime

3]),
oidDateTime

2 =
(oidDateTime

2 , [date = 345, time = 567]),
oidDateTime

3 =
(oidDateTime

3 , [date = 345, time = 678]),
oidCal2Entries

1 =
(oidCal2Entries

1 , [cal = oidCalendar
1 , entries = oidMeeting

1]),
oidPart2Meet

1 =
(oidPart2Meet

1 , [participants = oidUser
1 ,

meetings = oidMeeting
1]),

oidPart2Meet
2 =

(oidPart2Meet
2 , [participants = oidUser

2 ,

meetings = oidMeeting
1])

]

This is a system model based definition of the object diagram.

38

3 Control Part of the System Model

Having defined the data part, this and the following chapters focus on the control part of the system model.
The control part defines the constituents of the structure used to store control information. The control
store contains additional information needed to determine the state of the system during computation. In
particular, we provide means to express:

• how control flows (as part of method calls) through active and passive objects,

• what it means for an object to be active or passive,

• how messages are passed, delayed and handled,

• how events are handled,

• how threads work in a distributed setting, and

• how synchronization of all these concepts takes place.

Besides the rather general rules that specify how control and data structure fit together, the theories of this
chapter also define variation points, e.g., for single-threaded or completely distributed and asynchronously
communicating systems.

One result of this chapter is a flexible mechanism to describe control structures of various kinds resem-
bling quite a number of implementation languages. This variability is enforced by the UML and leads to a
rather complex formalization of control. In fact, UML does not allow us to abstract away from control prim-
itives. In the systems we describe with UML, we do not only have various types of control and interaction,
but also very often their combinations within a single system.

In addition to its data store as introduced in Definition 2.8.2, a state machine of the system model has a
control store. The control store contains information about the behavior of the intended system and is used
by the state machine in order to decide which transition to perform next. A control store consists of:

• a stack of method/operation calls, each with its arguments and local variables,

• the progress of the running program (e.g., a program counter), and

• possibly information about one or more threads.

In any setting, be it distributed or not, any state machine of the system model also has to deal with
receiving and sending of events that trigger activities in objects. General events, such as “message arrived”
or “timeout”, must be handled by any object. As a first step, these events are put into an event store, which
consists of an event buffer for each object where handling of events is managed. The event store, which is
the last constituent of an objects state, is defined in Chapter 4.

Unfortunately, the rather detailed definition of stacks, events, and threads is not very elegant and does
not give us much abstraction. However, this lack of elegance accurately covers the lack of elegance in
distributed object-oriented systems where method calls, asynchronous signals and threads of activity are
orthogonal concepts that can be mixed in various ways. On the one hand, these concepts provide the system
developer with great flexibility. On the other hand, they make it difficult to understand the behavior of the
resulting systems. In addition, many orthogonal concepts make it very awkward to describe a system model
that uses all of them, because any combination (useful or not) needs to be covered. The resulting complexity
becomes apparent in modeling the control part of the system model.

39

3.1 Operations

Objects are accessed through their methods/operations. Here, the term operation refers to the signature
whereas the term method refers (also) to the implementation (or body). Operations can be called and they
may provide a return value as given by the corresponding implementation. Each operation has a name and
a signature (which includes arguments and a return value that may be of type Void).

Definition 3.1.1 specifies signatures, which consist of a (possibly empty) list of types for parameters and
a type for the return value. Note that parameter names are not present in the signature; parameter names
are only part of the implementation. For each operation, its signature and its implementation, as well as the
class it belongs to, are uniquely specified. This approach does not explicitly specify overloading, signature
and implementation inheritance, overriding and dynamic binding but allows specializations in a flexible way
to various actually used mechanisms of method binding. This even includes binding mechanisms such as
that in Modula-3. These concepts, thus, are to be decided and defined by the time the mapping from UML
to the system model is devised.

Definition 3.1.1 (Definition of operations)

Operation
extend Object

UOPN,UOMNAME
nameOf : UOPN → UOMNAME
classOf : UOPN → UCLASS
parTypes : UOPN → List(UTYPE)
params : UOPN → TUPLE(UVAL)
resType : UOPN → UTYPE

params(op) = STuple(parTypes(op))

UOPN denotes the universe of operations,
UOMNAME denotes the universe of operation (or method) names,
nameOf returns the name of the operation,
classOf returns the class an operation belongs to,
parTypes is the list of parameters (their types),
params returns the operation arguments (as tuple),
resType returns the result type of the operation,

In order to complete the definition of signatures, we clarify how these signatures fit together with the
subclassing mechanism. Subclassing (c sub d) defines a constraint on signatures and, in many languages,
also on externally promised behavior of its related classes c and d.

In UML, interestingly, subclassing does not impose clear constraints on the implementation, as the imple-
mentation may be redefined according to some “compatibility” notion. This notion, however, is a semantic
variation point that we therefore also leave open to a semantic specialization, e.g., by adding additional
constraints for redefined method behavior.

Subclassing in general allows for renaming of parameters in the implementation, as those are not part of
the signature. The signatures (in the form of lists of types), however, are either equal or in a generaliza-
tion/specialization relation. The types of parameters can be generalized, and the type of the return value can
be specialized. This is the well-known co/contra-variant way [Mey97] that ensures type safety in a language
and modeled in Definition 3.1.2.

It is unclear whether in UML operation parameters can actually be redefined, as, e.g., Java allows, so we

40

Definition 3.1.2 (Definition of type safety on operations)

TypeSafeOps
extend Operation

∀ op1 ∈ UOPN, c ∈ UCLASS : c sub classOf (op1)⇒
∃ op2 ∈ UOPN : classOf (op2) = c∧

nameOf (op1) = nameOf (op2)∧
CAR(resType(op1)) ⊇ CAR(resType(op2))∧
params(op1) ⊆ params(op2)

For any subclass c we type safely inherit op1 from the superclass.

just have it in the system model, although UML may not need it. Variation Point 3.1.3 contains a version of
type safety with a non-changeable signature.

Variation Point 3.1.3 (Stronger version of type safety on operations)

[TypeSafeOps2]
extend TypeSafeOps

∀ op1 ∈ UOPN, c ∈ UCLASS : c sub classOf (op1)⇒
∃ op2 ∈ UOPN : classOf (op2) = c∧

nameOf (op1) = nameOf (op2)∧
params(op1) = params(op2)∧
resType(op1) = resType(op2)

Type safety with no specialization of signatures.

Although, Definition 3.1.2 is rather general it must not necessarily hold in all object-oriented languages.
In particular, languages such as Smalltalk exhibiting “Message not understood” errors to which a program
can react, do not enforce this type safety requirement.

UML furthermore provides “out” and “in/out” parameters. Many authors however advise against the use
of (in/)out parameters. The recommendation in the present context is to use a variation point where, if
several “out”-values are to be assigned, each of these is assigned through method call or message passing.
In this way, object encapsulation is kept. However, if needed, the system model allows to encode these
parameters by passing locations of the variables where the “out”-values are to be stored. Locations are
discussed in Variation Point 2.8.4 above.

In the system model operations have exactly one return value. Multiple return values can be encoded in
such a way that they are packed in a separate class or record.

In UML there is also the notion of “object behavior”, which, strictly speaking, is not a method. However,
for simplification we assume that “object behavior” can be encoded as a special kind of operation associated
with the object whose parameters define the signature of the operation.

3.2 Methods

Recall that the term operation only refers to the signature whereas the term method refers (also) to the
implementation. Methods, thus, have a signature and an internal implementation. The signature of a method
consists of a list of parameter names with their types. Projected on the list of types, this list coincides with
the parameter type list of the associated operation(s).

41

To provide all information necessary for a detailed understanding of method interactions, we need an
abstract notion of a program counter, a binding between argument values and the corresponding formal
parameter variables, and a store for local variables as given in Definition 3.2.1. Furthermore, a method is
equipped with the class name, to which it belongs and where it is implemented. Note that localsOf and
parOf result in variable assignments that contain mappings of variables to appropriate values.

Definition 3.2.1 (Definition of methods)

Method1
extend Operation

UMETH,UPC
nameOf : UMETH → UOMNAME
definedIn : UMETH → UCLASS
parNames, localNames : UMETH → List(UVAR)
parOf , localsOf : UMETH → VarAssign
resType : UMETH → UTYPE
pcOf : UMETH → Pf (UPC)

parOf (m) = SRec(parNames(m), vsort)
localsOf (m) = SRec(localNames(m), vsort)
parNames(m) ∩ localsNames(m) = ∅
parNames(m) ∩ attr(definedIn(m)) = ∅
localsNames(m) ∩ attr(definedIn(m)) = ∅

UMETH: universe of methods;
UPC: universe of program counter values.
definedIn: the class the method (implementation) belongs to (and was defined);
parNames: formal parameter variables;
localNames: local variables used;
parOf : assignment of parameters;
localsOf : assignment of local variables;
resType: result type;
pcOf set of possible program counters of a method;
For convenience we assume the parameters, attributes and local variables are disjoint (syntactic resolution
allows that).

Here we have fully decoupled the concept of method (implementation) and operation (signature) to de-
scribe them independently. However, there usually is a strong link between methods and operations: A
method can only implement operations with compatible signatures. However, as implementations can be in-
herited, multiple operations can refer to the same method as its implementation. In this way, on the one hand
the operation signature can be adapted (e.g., made more specific) without changing the implementations,
and on the other the implementation can be redefined using a new method in a subclass. Definition 3.2.2
describes this relation through function impl that associates a method to a signature; if the class can be
instantiated, all operations of that class need to have implementations.

Note that the external signature of an operation is defined using a tuple (params(op)) while the parameter
list of the corresponding method implementation also includes variable names to refer to these parameters
(parNames(m)). Knowing which names the parameters have (from parNames), we can use the bidirectional
mappings rec and tuple between these two structures.

The UML specification documents sometimes say “behavior executions” are kinds of objects on their
own. We do not require every “behavior execution” to be an object on its own, but if necessary, it is not a

42

Definition 3.2.2 (Relationship between method and operation)

Method
extend Method1

impl : UOPN ⇀ UMETH

∀ op ∈ UOPN : m = impl(op)⇒
nameOf (m) = nameOf (op)∧
classOf (op) sub definedIn(m)∧
CAR(resType(m)) ⊆ CAR(resType(op))∧
tuple[parNames(m)]∗(parOf (m)) ⊇ params(op)
∀ c ∈ UCLASS :

oids(c) 6= ∅⇒
∀ op ∈ {op ∈ UOPN | classOf (op) = c} : op ∈ dom(impl)

impl assigns a method implementation to each operation.

problem to encode behavior executions as objects.

3.3 Stacked Method Calls

A stack is a well-known mechanism to store the structure necessary to handle chained and (mutually) recur-
sive method calls. In order to describe nested operation calls and, in particular, object recursion1, we cannot
abstract from the control stack. Object recursion is a common principle in object orientation and provides
much flexibility and expressiveness. Almost all design patterns [GHJV95] as well as callback-mechanisms
of frameworks [FPR01] rely on this principle.

Actually, to resume a computation after a method call, the information where computation is to be contin-
ued must be available. Therefore, the system model provides an abstract notion of stack frames, including
(abstract) program counters.

To introduce the general, multi-threaded case in an understandable fashion, we start by introducing the
simplified case with one thread only. According to Definition 3.3.1, a stack frame consists of the identifier of
the object that the method being (or to be) executed belongs to, the method name, the program counter of the
method, the identifier of the invoking object and a record value for parameters and local values. StackFrame
is a rather general definition and many additional conditions can be added to furhter constrain the actual set
of states in the system model.

The method may fork several control flows. Nevertheless, frames have only one program counter. When
a fork takes place, a new thread is started. Each thread has its own stack of frames, each of which contains
again only one program counter. Therefore, the frames do not differ in the multi-threaded case, but we have
more than one stack of such frames.

In the case of a single threaded system, the only existing thread could then be defined as element of type
Stack(FRAME).

In the following section, we extend this definition to model distributed threads running in parallel or
somehow interleaved. For this purpose, we develop two different and isomorphic views.

1That is, a method calls another method of the same object. This is in contrast to calling the same method (of an other object),
which is method, but not object recursion.

43

Definition 3.3.1 (Stack frames)

StackFrame
extend Method

FRAME = UOID× UOMNAME × VarAssign× UPC × UOID
framesOf : UMETH → P(FRAME)

framesOf (m) = {(callee, nameOf (m), vars, pc, caller) |
∃ op ∈ UOPN : m = impl(op)∧
callee ∈ oids(classOf (op)) ∧ pc ∈ pcOf (m)∧
vars ∈ parOf (m)⊕ localsOf (m)}

FRAME is the universe of frames;
framesOf is the set of possible frames for a given method.

Derived:
framesOf (m) =⋃

op∈UOPN,m=impl(op) oids(classOf (op))× {nameOf (m)}×
(parOf (m)⊕ localsOf (m))× pcOf (m)

3.4 Multiple-thread Computation, Centralized View

There are quite a number of approaches to combine object orientation and concurrency. Some approaches
argue that each object is a unit of concurrency on its own. Others group passive objects into regions around
single active objects, allowing operation calls only within a region and message passing only between re-
gions. The programming languages that are commonly used today, however, have concurrency concepts
that are completely orthogonal to objects. This means, various concurrent threads may independently and
even simultaneously “enter” the very same object. In the following, we add a model of threads to our system
model that handles this general case and allows specialization to all these approaches.

We do, however, have the basic assumption that there is a notion of atomic action. These atomic actions
are the basic units for concurrency; their exact definition is deferred to the UML actions definitions. On top
of atomic actions we assume forms of concurrency control that are provided through appropriate concepts
in UML (like “synchronized” in Java). However, UML currently does not provide sufficient mechanisms to
actually define scheduling and atomicity of actions conveniently. Possible units of concurrency, for example,
would be a variable assignment or an operation invocation.

To model multiple threads, we introduce the (abstract) universe of possibly infinitely many threads in
Definition 3.4.1. The control store maps a stack of frames to each thread. The condition ensures that any
calling object was the called object in the previous frame. We leave open which oid belongs to the starting
Frame1 and regard the callee of the last frame to be the currently operating object. An illustration of the
central control store with concurrently executing threads is given in Example 3.4.2.

3.5 Multiple-thread Computation, Object-Centric View

The model of threads defined above is rather general, but so far does not cover how concurrent threads
are executed within an object. To enable a general mechanism for scheduling and definition of priorities,
we rearrange the representation of thread-based stacks providing a different view on threads (i.e., without
changing the described model). The key idea is to use an object-centric view of stacks instead of the current
thread-centric view as shown in Definition 3.5.1. As an important side effect, objects are then described in a

44

Definition 3.4.1 (The control store in centralized version)

Thread
extend StackFrame

UTHREAD
CentralControlStore ⊆ (UTHREAD→ Stack(FRAME))

∀ ccs ∈ CentralControlStore, t ∈ UTHREAD :
∀ n < #ccs(t) : ∃ oid ∈ UOID :

ccs(t)[n] = (oid, ∗, ∗, ∗, ∗) ∧ ccs(t)[n + 1] = (∗, ∗, ∗, ∗, oid)

UTHREAD is the universe of threads.
CentralControlStore assigns a stack to each thread.

Example 3.4.2 (Centralized view on concurrently executing threads) The figure below illustrates the
situation where two threads are active, and both object recursion as well as concurrency occurs. Here
“Framex.y” denotes that the frame is in thread x at position y, where the highest y-numbers denote the active
frames:

Object A

Frame1.3

Frame1.2

Frame1.1

Thread1‘s
Stack

Object B

Frame2.2

Frame2.1

Thread2‘s
Stack

belongs to

self-contained way. This means that the control information in the system and the object state in full provide
a compositional view on object-oriented systems.

For a ControlStore cs the stack cs(oid)(t) contains exactly those frames where a method from object oid
was called in thread t.

Note that the relation . ∼ . defines an isomorphism as formulated in Lemma 3.5.2. The decentralization
into a control store is by definition a function. However, the original stacks can also be uniquely recon-
structed because the caller object identifier is part of the frame of the called object. So both representations
of the control store provide exactly the same information differently arranged.

Example 3.5.3 shows the above Example 3.4.2 as represented by the object-centered control store.
According to the definition of method calls below (c.f., 4.2.1), we will see that an object is able to rec-

ognize that it is being called a second time within the same thread. This is important when, for instance,
scheduling or blocking incoming messages from other threads. The Java synchronization model distin-
guishes recursive calls from other threads and calls from the same threads, and blocks the former but not the
latter.

45

Definition 3.5.1 (The control store in object-centric version)

ControlStore
extend Thread

ControlStore ⊆ (UOID→ UTHREAD→ Stack(FRAME))
. ∼ . ⊆ CentralControlStore× ControlStore

ccs ∼ cs⇔
∀ oid ∈ UOID, t ∈ UTHREAD :

cs(oid)(t) = filter({(oid, ∗, ∗, ∗, ∗)}, ccs(t))

ControlStore splits each stack in parts that belong to objects.
. ∼ . relates two representations of the control store by essentially filtering the centralized stack with
regards to individual objects.

Lemma 3.5.2 (Control store representations are equivalent)

use ControlStore

∀ ccs ∈ CentralControlStore : ∃1 cs ∈ ControlStore : ccs ∼ cs
∀ cs ∈ ControlStore : ∃1 ccs ∈ CentralControlStore : ccs ∼ cs

Example 3.5.3 (Object-centric view on concurrently executing threads)

Frame1.2

Thread1

Object B

Frame2.2

Frame2.1

Thread1 Thread2 Object A Thread1 Thread2

Frame1.3

Frame1.1

Thread2

calls

3.6 Summary of Threads and Stacks

We summarize the theory built so far, defining threads, stacks and method frames as well as the operations
and methods in theory Control (Definition C.1.4). This definition relies on Theories Type (and Object) but
is independent from Data.

Figure 3.1 illustrates the theory dependencies and variation points.

3.7 Example for Operations, Methods, and ControlStore

To get a better understanding of how this works, we define an example with operations and methods in the
system model that correspond to the methods that have been added to the class diagram in Figure 3.2.

There are three operations with name check to ensure that each subclass of Entry provides the required

46

Object

Control
Thread

ControlStore

Method
StackFrame

Method1
Operation

TypeSafeOps
TypeSafeOps2

SingleThread MessagesOnly

ActiveObjects

Regions

Figure 3.1: Theory Control and its dependencies.

current

Meeting

DateTime

int date
int time

start end

{ordered}
*

owner

organizer
participants *

CD

*

entries

1

Calendar

void updateTime(DateTime n)

bool before(DateTime d)

<<abstract>>
Entry

void check()

owns

Appointment

bool business

User

String uname

Figure 3.2: Extended class diagram with methods.

operations (for type-safety). The implementation (i.e., method) Mcheck is reused by all three operations and
therefore inherited but not overridden. The definitions are straightforward and so only an excerpt of the full
definition is shown in Example 3.7.1.

Next, we continue the example and show how a control store might look like at a specific point of time
during a system run. We assume a data state as given in Example 2.12 and the existence of a thread th1. We
model the control state in which operation OcheckM has been called by a user that in turn is assumed to call
operation Obefore. The current program counter in method Mcheck is hence assumed to be a “wait point”.
The control state of the user that called the method is omitted in the example.

Figure3.3 provides the isomorphic thread-centric view. The only thread th1 has two frames. The frame
for the currently active method before is on top. After finishing the method, that frame will be removed
from the stack . Then frame 1 becomes the currently active frame and hence method before the currently
executing method for thread th1.

47

Example 3.7.1 (Control example, part 1)

extend Control

// Operations:
OupdatetTime,Obefore,Ocheck,OcheckA,OcheckM ∈ UOPN
nameOf (OupdateTime) = updateTime
classOf (OupdateTime) = Calendar
parTypes(OupdateTime) = [DateTime]
resType(OupdateTime) = Void
nameOf (Ocheck) = check = nameOf (OcheckA) = nameOf (OcheckM)
classOf (Ocheck) = Entry
classOf (OcheckA) = Appointment
classOf (OcheckM) = Meeting
parTypes(Ocheck) = [] = parTypes(OcheckA) = parTypes(OcheckM)
resType(Ocheck) = Void = resType(OcheckA) = resType(OcheckM)
(similar for operation Obefore)

// Methods:
MupdateTime,Mbefore,Mcheck ∈ UMETH
nameOf (MupdateTime) = updateTime
definedIn(MupdateTime) = Calendar
parNames(MupdateTime) = [n]
localNames(MupdateTime) = []
resType(MupdateTime) = Void
pcOf (MupdateTime) = pcs
(definitions similar for Mbefore, Mcheck)

// Assignment of operations to methods:
impl(OupdateTime) = MupdateTime
impl(Ocheck) = Mcheck = impl(OcheckA) = impl(OcheckM)
impl(Obefore) = Mbefore

This is a system model based definition of the operations and methods from the class diagram.

Example 3.7.2 (Control example, part 2)

extend Control

cs = [
oidMeeting

1 =
[th1 = Stack[oidMeeting

1 , check, [],waitPC, oidUser
1]],

oidDateTime
2 =

[th1 = Stack[oidDateTime
2 , before, [d = oidDateTime

3], ∗, oidMeeting
1]]

]

This is an example control store of a system given by the class diagram.

48

Object: oid1
Meeting

Stack of Thread th1

Object: oid2
DateTime

callee
Frame2: (oid2

DateTime, before, [d], pc, oid1
Meeting)

Frame1: (oid1
Meeting, check, [], waitPC, oid1

User)

Figure 3.3: Thread-centric view for the example control store.

3.7.1 Variation Point: Single Thread Only

There are a number of variations and specializations possible. For example, a restriction to a single threaded
(classical sequential) execution is enforced by Variation Point 3.7.3.

Variation Point 3.7.3 (A single thread only)

[SingleThread]
use Thread

#UTHREAD = 1

3.7.2 Variation Point: Message Passing Objects Only

Quite the contrary, we can assume that every object is active and does not call any other object via method
calls, but only via asynchronous message passing which we will define later. Variation Point 3.7.4 makes all
existing objects active and method calls occur only within an object.

Variation Point 3.7.4 (Objects communicate via messages only)

[MessagesOnly]
use ControlStore

UTHREAD = UOID
∀ cs ∈ ControlStore, oid ∈ UOID, n : cs(oid)(oid)[n] = (oid, ∗, ∗, ∗, ∗, ∗)

Derived:
∀ cs ∈ ControlStore, t, oid ∈ UOID : t 6= oid ⇒ cs(oid)(t) = []

3.7.3 Variation Point: Active vs. Passive Objects

UML provides the notion of “active” vs. “passive” objects. An active object owns a scheduler that is capable
of handling asynchronously received messages. A passive object, on the contrary, only reacts to incoming
method calls. However, method calls between active and passive objects are possible. Thus, the thread
concept is orthogonal to the concept of objects being active.

In Variation Point 3.7.5 we formalize an “active” object as an object that has a thread associated which
can be retrieved through a partial function thread. Furthermore, the first frame on the stack of the control

49

store ControlStore(oid, thread(oid)) is a permanently running method called run that should observe and
control the input message queue of object oid.

Variation Point 3.7.5 (Some objects are regarded active)

[ActiveObjects]
use ControlStore

thread : UOID ⇀ UTHREAD
run ∈ UOMNAME

∀ cs ∈ ControlStore, oid ∈ dom(thread) ∩ dom(cs) :
cs(oid, thread(oid))[1] = (oid, run, ∗, ∗, ∗, ∗)

3.7.4 Variation Point: Objects located in Regions

The normal case lays somewhere in between: In a distributed system, there are regions of objects belonging
together and sharing threads, whereas objects in different regions (processes, processors) only communicate
via message passing. Variation Point 3.7.6 models this.

Variation Point 3.7.6 (Threads can be regionally localized)

[Regions]
use ControlStore

UREGION
owner : UOID→ UREGION

∀ cs ∈ ControlStore, oid ∈ UOID, t ∈ UTHREAD, n :
cs(oid)(t)[n] = (callee, ∗, ∗, ∗, ∗, caller)⇒

region(caller) = region(callee)

As a side effect, threads are then also owned by a region, because they never leave these objects. While this
definition does not principally simplify reasoning on object behavior, it de facto simplifies reasoning quite
well since we can control the number of threads in a region and thereby control and limit the interactions
between threads.

50

4 Messages and Events in the System Model

In this Chapter, we specify messages and events and how they are stored and handled within objects.

4.1 Messages, Events and the Event Store

UML provides a rather general notion of events. Examples for events are

• sending and reception of messages, which resembles method calls with parameters or return values,

• a timeout,

• a simple signal, or

• a spontaneous state change.

In general, we assume that events may be handled by an operation being executed, or continued (in case
of a return event), or ignored. Events are stored in the event buffer. They need not be consumed in the order
they appear, a more sophisticated management (scheduling) is allowed individually for each object.

Messages are specific kinds of events. This leads to a uniform handling of events and messages and the
more general concept that we chose to call “Events”. In general, handling of event occurrences may be
delayed, ignored or stored until it is possible to handle it. To capture this rather general notion of event, we
introduce a universe of events that can occur in systems, without structuring it further at this point. Later we
introduce several kinds of messages, like method call and return, as special forms of events, but leave open
which other kinds of events exist.

Based on the universe of events in Definition 4.1.1, we introduce the EventStore where events that have
occurred are buffered for processing. A buffer is a rather general structure to store and handle messages, deal
with priorities etc. Note that the UML specification distinguishes between event (types) and event occur-
rences (c.f, [OMG07b, Sect. 6.4.2]). Event occurrences are instances of events that may store information
like the time the instance occurred and possibly other state information. In our model, event occurrences
then correspond to system states in which the event has just been added (sent) or just has been removed
(received) from the event store.

In the following Definition 4.1.2 we introduce the universe of messages and with it the special kind
of event MsgEvent. Messages are a general mechanism to encode any kind of synchronous method call, as
well as asynchronous message passing. Here we describe that any message has a unique sender and receiver.
However, we do not enforce any further distinction between the various possible forms of messages. This
approach does not allow us to model broadcasting or multicasting directly. Multicasting, for example, can
be simulated by sending many times the same message to different addressees.

We assume that a Buffer is a given, rather general structure for storing and retrieving occurring events. It
also allows the scheduler to rearrange the order of their processing with respect to priorities. In a simplified
version, a Buffer behaves like a FIFO-queue without any priority mechanisms. In the case of single threaded
programs without specific event structures, the Buffer will only contain incoming (message) events. These
events trigger method calls and returns. Because of single threaded computing, the Buffer never contains
more than one element and can safely be ignored.

51

Definition 4.1.1 (EventStore and object event signature)

EventStore
use Object

UEVENT
eventsIn : UOID→ P(UEVENT)
eventsOut : UOID→ P(UEVENT)
EventStore ⊆ (UOID→ Buffer(UEVENT))

events(oid) = eventsIn(oid) ∪ eventsOut(oid)
∀ es ∈ EventStore : es(oid) ∈ Buffer(events(oid))

UEVENT is the universe of events;
eventIn are the events that an object may receive;
eventOut are the events that an object may generate;
EventStore maps an object identifier to a buffer of processable events.

Definition 4.1.2 (Object message signature)

Message
use EventStore,Object

UMESSAGE
MsgEvent : UMESSAGE → UEVENT
sender, receiver : UMESSAGE → UOID
msgIn,msgOut : UOID→ P(UMESSAGE)

∀m ∈ UMESSAGE, oid ∈ UOID :
sender(m) = oid ⇔ MsgEvent(m) ∈ eventsOut(oid)
receiver(m) = oid ⇔ MsgEvent(m) ∈ eventsIn(oid)
msgIn(oid) = {m | receiver(m) = oid}
msgOut(oid) = {m | sender(m) = oid}

UMESSAGE is the universe of messages;
MsgEvent wraps messages into events that can then be stored in the event store; and sender and receiver
enforce that any message has a unique sender and receiver.

4.2 Method Call and Return Messages

We introduce some very common kinds of messages: namely messages that describe method call and return.
Method call and return are encoded into messages which is a well-known technique in distributed systems
that support “remote procedure calls”.

Call messages carry the usual information, like called object, method name, parameter values, as well as
the caller and the thread. All the parameters of a call that may arrive to invoke a message in an object are
packed by the function callsOf into an appropriate message. Definition 4.2.1 introduces callsOf .

Return messages carry the return value, the thread, the sender and receiver of the result value. So the
Definition 4.2.2 differs only slightly from the previous definition of method calls.

Note that according to Definition 4.2.2 receiver r was the sender of the original method call and now
receives the return answer.

Given the definition of message structures above, it is actually possible to unify the concepts of method

52

Definition 4.2.1 (Method call messages)

MethodCall
use EventStore,Message,Control

callsOf : UOID× UOPN × UOID× UTHREAD→ P(UMESSAGE)
callsOf : UOID→ P(UMESSAGE)

∀ r, s ∈ UOID, op ∈ UOPN, th ∈ UTHREAD :
callsOf (r, op, s, th) ⊆ UOID× UOMNAME × TUPLE × UOID× UTHREAD
callsOf (r, op, s, th) = {(r, nameOf (op), pars, s, th) |

r ∈ oids(classOf (op))∧
pars ∈ params(op)

callsOf (r, op, s, th) ⊆ msgIn(r)
callsOf (r, op, s, th) ⊆ msgOut(s)

callsOf (r) =
⋃

s∈UOID,th∈UTHREAD,op∈UOP callsOf (r, op, s, t)

callsOf defines the set of method calls from object s to r with operation signature op and run in thread th.

Derived:

m ∈ callsOf (r, ∗, s, ∗)⇒ receiver(m) = r ∧ sender(m) = s

Definition 4.2.2 (Return messages)

MethodReturn
use EventStore,Message,Control

returnsOf : UOID× UOPN × UOID× UTHREAD→ P(UMESSAGE)
returnsOf : UOID→ P(UMESSAGE)

∀ r, s ∈ UOID, op ∈ UOPN, th ∈ UTHREAD :
returnsOf (r, op, s, th) ⊆ UOID× UVAL× UOID× UTHREAD
returnsOf (r, op, s, th) = {(r, v, s, th) |

s ∈ oids(classOf (op)) ∧ v ∈ CAR(resType(op))}
returnsOf (r, op, s, th) ⊆ msgIn(r)
returnsOf (r, op, s, th) ⊆ msgOut(s)

returnsOf (r) =
⋃

s∈UOID,t∈UTHREAD,op∈UOP returnsOf (r, op, s, t)

returnsOf defines the set of returns from object s to r that may occur as response to a method call in
thread th.

Derived:

m ∈ returnsOf (r, ∗, s, ∗)⇒ receiver(m) = r ∧ sender(m) = s

calls and returns, on the one hand, and of messages, on the other, into one single concept of message passing.
This allows the handling of composition of objects and provides a clear interface definition for objects and
object groups. Method calls and returns are then just special kinds of messages and can be treated together

53

with other kinds of incoming messages.

4.3 Asynchronous and Broadcast Messages

Not every message needs to carry a thread marker. There may be signals that an object may accept. Formally,
signals are just asynchronous messages that do not transfer any control. In this case, an object needs to
be “active” in the sense that it already has an internal thread to process the message. Variation Point 3.7.5
defines a way to identify active objects. However, it may be that an object is not in itself active, but it belongs
to a group of objects that has a common scheduling concept for the processing of messages that come from
outside. This concept resembles the situation in classical language realizations where one process contains
many objects. We can use the concept of regions from Variation Point 3.7.6 to describe such a common
scheduling strategy.

To be able to explicitly talk about signals, we introduce a subset of messages to be asynchronous in
Definition 4.3.1.

Definition 4.3.1 (Signals as asynchronous messages)

Signal
use Message,MethodCall,MethodReturn

USIGNAL ⊆ UMESSAGE

callsOf (∗, ∗, ∗, ∗) ∩ USIGNAL = ∅
returnsOf (∗, ∗, ∗, ∗) ∩ USIGNAL = ∅

4.3.1 Example: Handling Signals

Signals can be treated in a variety of ways. In the following Example 4.3.2 we provide a specific instantiation
that assumes all messages are encoded as values of a specific type Signal and are handled by a message
handling method signalHandler, which is called when a signal is to be processed.

As we cannot model the behavioral aspects of such a handling right now, we just concentrate on the
structural elements. We leave open whether type Signal is a primitive type, a record, or a class.

Example 4.3.2 (A handler method for signals)

use Object,ActiveObjects, Signal

signalHandler ∈ UOMNAME
Signal ∈ UTYPE

CAR(Signal) ⊆ USIGNAL
∀ oid ∈ dom(thread) : ∃ op ∈ UOPN :

classOf (op) = classOf (oid) ∧ nameOf (op) = signalHandler∧
parTypes(op) = [Signal]

Depending on the kind of system, asynchronously sent messages can be treated as normal values like in
Definition 4.3.1, or they can be handled as method calls. When treated as ordinary call messages a special
thread marker for the “asynchronous case” could be used, indicating that no answer is desired.

54

4.3.2 Variation Point: Multicast

Messages can be multicasted and even broadcasted. Multicasted messages are put in the set of input events
eventsIn(o) of many objects, broadcasted messages in the set of input messages of all objects currently
present in the system. Multicasted messages, before being replicated, do not carry the identifier of a re-
ceiver; they are, however, associated to a number of intended addressees. Broadcasted messages need not
be associated to any receiver, since they are to be sent to every object in the system or in the region.

Multicasted and broadcasted messages are normally not anticipated by the multiple recipients and there-
fore by nature they are asynchronous and, as explained above, do not carry a thread identifier.

A special kind of events models timeouts. Timeout events can be defined as ordinary messages sent by
a special timer object to tell the receiving object that a certain amount of time has passed. Usually timeout
events have a high priority in event buffers. As an alternative, the formalization of state machines in the
system model are timed. Thus an object can react to passing time, for instance by counting time slices and
reacting via creation of a timeout event that is buffered at first and handled (possibly immediately afterwards)
like an ordinary event.

4.3.3 Computation and Scheduling

The organization of event arrival and storage in the event buffer is very much underspecified at the moment.
This is part of the scheduling strategy that a system, a subsystem, a region, a component or even a single
object may have.

A scheduling strategy determines the next step of an object. In fact, a centralized scheduling strategy
(e.g., for all objects of a processor) may be modeled in the system model as easily as a decentralized version
where in the extreme case each object has its own scheduler. The scheduling may also be defined for groups
of objects (belonging to the same processor, virtual processor, scheduling domain, etc.). We cannot directly
define specific scheduling strategies here, as these scheduling strategies rely on the notion of actions as well
as the state machine model which will only be introduced in a later chapter.

4.4 Example for Events and Messages

In Example 4.4.1, we briefly show how an event store might look like that could be part of a system described
by the class digram in Figure 3.2. The example models the situation in which an object of class Calendar
has a message in its buffer that corresponds to a method call to method MupdateTime.

4.5 Summary of Messages and Events

Summarizing, we have defined events and messages as well as two specific kinds of messages to model
method calls in theory Events in Definition C.1.5. Figure 4.1 illustrates the theory dependencies and varia-
tion points.

The complexity of the theories Data, Control, and Events of the system model has shown that the inte-
gration of objects, threads, concurrency and communication is either not solved very well in object-oriented
programming languages, or it is by nature complex. All three concepts are somehow orthogonal and can
be used in quite a variety of ways. This flexibility offers great opportunities but also great methodological
challenges to ensure the quality of the modeled system. It is particularly complex to model the possible inter-
ferences between these concepts and one or a few standardized solutions would greatly help. Instead, UML
today tries to allow any combination and thus leads to a larger set of variation points, and no appropriate
overview of those is yet available.

55

Example 4.4.1 (Event store example)

extend Events,Control

Messages:
m = (oidCalendar

1 , updateTime, oidDateTime
1 , ∗, th2)

∈ callsOf (oidCalendar
1 ,OupdateTime, ∗, th)

⊆ UMESSAGE

Events:
MsgEvent m ∈ eventsIn(oidCalendar

1) ⊆ UEVENTS

Example control store:
cs = [

oidCalendar
1 =

Buffer[(oidCalendar
1 , updateTime, oidDateTime

1 , ∗, th2)]
]

An example event store.

Object

Control

Events

Signal

MethodCall

MethodReturn

MessageEventStore

Multicast

Figure 4.1: Theory Events and its dependencies.

56

5 Object State

5.1 Individual Object States

The signature and the state space of an object can now be defined completely. It comprises data, control and
event stores. Recalling the definitions, we see that all three stores are defined as mappings from UOID to
the respective state elements. Thus, the state of an object is fully described by a value of OSTATE as given
in Definition 5.1.1.

Definition 5.1.1 (State space of an individual object)

ObjectStates1
extend Data,Control,Events

STATE ⊆ DataStore× ControlStore× EventStore
oids : STATE → P(UOID)
OSTATE = INSTANCE × (UTHREAD→ Stack(FRAME))

× Buffer(UEVENT)
state : STATE × UOID→ OSTATE
states : UOID→ P(OSTATE)

STATE = {(ds, cs, es) | dom(ds) = dom(cs) = dom(es)}
oids(ds, cs, es) = oids(ds) = dom(ds)
∀ oid ∈ oids(us) : state((ds, cs, es), oid) = (ds(oid), cs(oid), es(oid))
states(oid) = {state(us, oid) | us ∈ STATE ∧ oid ∈ oids(us)}

The state of an object consists of its actual attribute values, the events and the threads belonging to an
object. states defines the potential states of an object.

Derived:

oids(ds, cs, es) = dom(ds) = dom(cs) = dom(es)

5.2 Grouped Object States

In Definition 5.2.1 both functions state and states can be generalized to define the actual and potential set of
states for groups of objects. These generalizations, however, use a mapping from object identifiers to their
respective contents and are thus structurally equivalent to STATE. The structural equivalence of STATE and
states(os) raises the possibility to use a composition on object states in Lemma 5.2.2 that we can furthermore
use to compose state machines in the following chapter. In particular is f ⊕ g well-defined, as state(us, osi)
is equal on the common objects os1∪os2. This also allows to regard the possible set of object states in states
as a cross product, where the common object identifiers need to coincide in their state.

Definition 5.2.1 also identifies states(o) and states({o}) as equivalent, as the latter is a function with a
single value domain only.

57

Definition 5.2.1 (State space of sets of objects)

ObjectStates2
extend ObjectStates1

state : STATE × P(UOID)→ (UOID→ OSTATE)
states : P(UOID)→ P(UOID→ OSTATE)

∀ os ⊆ UOID, us ∈ STATE, oid ∈ UOID :
state(us, os)(oid) = state(us, oid)
∀ os ⊆ UOID :

states(os) = {state(us, os) | us ∈ STATE ∧ os ⊆ oids(us)}

Function state and states can be generalized to define the actual and potential set of states for groups of
objects.

Derived:

∀ os ⊆ UOID, us ∈ STATE : dom(state(us, os)) = os ∩ dom(us)
∀ os ⊆ UOID, f ∈ states(os) : dom(f) = os ∩ dom(us)

Lemma 5.2.2 (State space composition)

ObjectStates
extend ObjectStates2

∀ os1, os2 ⊆ UOID, us ∈ STATE :
state(us, os1 ∪ os2) = state(us, os1)⊕ state(us, os2)
∀ os1, os2 ⊆ UOID, os1 ∩ os2 = ∅⇒

states(os1 ∪ os2) = {f1 ⊕ f2 | fi ∈ states(osi), i = 1, 2}

Function state and states are compositional wrt. the state of objects.

Derived:

∀ os, os1, os2 ⊆ UOID : os = os1 ∩ os2 ⇒
states(os1 ∪ os2)
= {f1 ⊕ (f2 |os2\os1) | fi ∈ states(osi)}
= {(f1 |os1\os2)⊕ f2 | fi ∈ states(osi)}
= {(f1 ⊕ f2) | fi ∈ states(osi) ∧ f1 |os= f2 |os}

5.2.1 Example: Layout of an Object Structure

Example 5.2.3 demonstrates the structure of an object state.

5.3 Summary of Object State

Definition 5.2.2 already summarizes all functions related to object states. Therefore, we just briefly recapit-
ulate this in Definition C.1.6 in theory State. Figure 5.1 illustrates the theory dependencies.

58

Example 5.2.3 (Object state, comprising of data, control, and events)

Frame1.2

Thread1

Object B

Frame2.2

Frame2.1

Thread1 Thread2

Thread2

Event2Event1

Buffer

attr2 = ...

Datastate

attr1 = ...

Data Control Events

State ObjectStates2

ObjectStates1

Figure 5.1: Theory State and its dependencies.

59

6 Event-based Object Behavior

Based on the notions of state for each object and the corresponding incoming and outgoing events, we can
now specify the behavior of an object in form of a state transition system. For this purpose we use the theory
of state transition systems (STS) as defined in Appendix B.3.

We start with a STS-based representation of basic actions. For that we use an ordinary programming
language such as Java as basis instead of special actions that are defined in UML (c.f., [OMG07b, Chap.
11]) because of the better expressiveness of Java. However, this STS-based representation of method bodies
is defined as an instantiation of a variation point and can be omitted or modified at will.

6.1 Variation Point: Method Definitions

Methods usually do not bother with the handling of the buffer, priority of events, etc., but provide a se-
quential realization within their body. Only the scheduler interrupts execution and prioritizes concurrently
running methods.

If the method is described as ordinary implementation, we can use the following control flow STS (CF-
STS) that is suited to describe the control flow within a method. This is a use of the STS defined in Ap-
pendix B.3.

When using normal methods bodies, each method has exactly one starting point, but possibly several
exit points. Variation Point 6.1.1 introduces starting points, exits and waiting points for method bodies. A
waiting point is a point where the method execution is suspended and waiting for another method to finish
and return.

Variation Point 6.1.1 (Classification of program counters)

[ControlFlowPCs]
extend State

StartPC,FinishPC,WaitReturnPC ⊆ UPC

∀m ∈ UMETH :
∃1 start ∈ StartPC : (∗, nameOf (m), ∗, ∗, start, ∗) ∈ FRAME∧
∃ end ∈ FinishPC : (∗, nameOf (m), ∗, ∗, end, ∗) ∈ FRAME

Program counters are classified according to their meaning in the control flow of method bodies.

6.1.1 Control Flow State Transition Systems

As objects react to incoming events, an STS describing object behavior is basically event-based and does
not necessarily describe timing aspects. To trigger the next execution step for thread th within an object, we
use †(th) as a pseudo-event as given in Definition 6.1.2.

With this trigger as explicit input of an STS, we can define the scheduling in a separate entity.
Transitions within the CFSTS are regarded as atomic actions. A CFSTS is defined in such a way that

an object has no direct access to an attribute of any other object, but may call methods and send events

60

Definition 6.1.2 (The stepper for an STS)

STSStepper
extend State

† : UTHREAD→ †(UTHREAD)

injective(†)

†(th) is used as trigger for the next execution step in thread th.

as desired. The state of a CFSTS is defined by the objects own attributes and the currently active frame.
Variation Point 6.1.3 introduces CFSTS, and uses STS as introduced in Definition B.3.1.

Variation Point 6.1.3 (Control flow STS for methods)

[CFSTS]
extend ControlFlowPCs use STSStepper

cfsts : UMETH × UOID× UTHREAD ⇀ STS(S, I,O)

∀m ∈ UMETH, oid ∈ UOID, th ∈ UTHREAD :
classOf (oid) sub classOf (m) ∧ cfsts(m, oid, th) = (S, I,O, δ, s0)⇒

S = {(o, fr) ∈ objects(oid)× framesOf (m) |
fr = (oid, ∗, ∗, ∗, ∗)}∧

s0 = {(o, fr) ∈ S | ∃ start ∈ StartPC : fr = (∗, ∗, ∗, start, ∗)}∧
I = {MsgEvent call | call ∈ callsOf (oid,m, ∗, th)} ∪ {†(th)}∧
O = eventsOut(oid)

cfsts assigns a possibly underspecified CFSTS to each method. This describes the implemented behavior
of that method in form of a state machine.

Note that there are alternatives to describe the result of method execution, e.g., using actions as defined
in [OMG07b, Chap. 11]. An action language may encompass an ordinary programming language but allow
additional actions that, e.g., deal with manipulating associations, timing and scheduling, etc.

Indeed, we believe it is useful to define such high-level, “model-aware” actions and allow to specify them
directly, as otherwise such concepts need to be emulated through lower-level concepts or cannot be handled
at all. This would mean associations are encoded as attributes, scheduling is managed through an API of an
ordinary object that serves as scheduler (in Java this would be a Thread object).

The above variation point is again not precisely constraining CFSTS. Indeed many states of the CFSTS
will never be reached, many outputs that are included in O will not be made. However, it is relatively
accurate on the input, as it describes all information that we know about the context.

Note that we have decided to attach one CFSTS for each method implementation to each object indi-
vidually. This gives a lot of freedom, even allowing different behaviors for the objects of the same class.
However, in practice objects of one class will be assigned the same CFSTS. Furthermore, objects of sub-
classes whose methods are not overridden shall be assigned the same CFSTS as their parent class objects.
This resembles method inheritance on the level of behavior through CFSTS.

Example: CFSTS for a Method

Figure 6.1 shows an example how a method might be implemented. With this example, we study how a
CFSTS is composed. We define a rather fine grained CFSTS to describe the implementation of the two

61

methods, using a program counter (here of form P00-P99) at least between each two statements. This is
done under the assumption that statements are the units of atomicity. If the methods are synchronized, larger
atomic actions can be found and the STS would be less fine grained.

/erg *= n

P11

P14

P15

P16

P17

P18

P19

/erg=1

return/

/n=n-1

[not n>1]/

P12

P13

[n>1]/

/mult(n)

/return erg

STS for method „fac“ STS for method „mult“

P21

P22

Factorial

int erg
int fac(int)
void mult(int)

CD

STS STS

int fac(int n) { - P11
 erg = 1; - P12
 while - P13
 (n > 1) { - P14
 mult(n); - P15 wait (within call)
 - P16
 n = n-1; - P17
 } - P18
 return erg; - P19 final
}

void mult(int x) { - P21 start
 erg *= x; - P22 final
}

Figure 6.1: Factorial Example

This example is partially translated into mathematical terms in Example 6.1.4 and 6.1.5 containing the
structural parts and the CFSTS as mathematical formalization of the Example in Figure 6.1.

Note that although its perfectly precise, a formalization of a compact model, such as a state transition
diagram in a mathematical model as given in Example 6.1.5 is always awkward to read. We do not expect
a system developer to handle such a formalization. But it is a possibility for a language developer to study
the meaning of a construct using mathematical terms: If this meaning pleases us, then have this meaning
in mind when developing an efficient code generator etc. Example 6.1.5 basically is nothing more than a
mathematical form of the control flow diagram. As it is easier to write such parts (copy-and-paste) than to
read, we have underlined interesting parts for convenience of reading.

6.2 Event-Based State Transition Systems

As mentioned above, objects react to incoming events and therefore can be described by an STS. This
behavior does not describe timing aspects. Definition 6.2.1 describes a type of event-based STS (ESTS) that
handles execution in a single object.

6.2.1 ESTS Definition

Definition 6.2.1 specifies the general structure and signature of ESTS. The ESTS operates on the full object
state and is triggered either by real events or by steps indicated by a †. Again, those steps denote only
scheduling of steps, not timing.

The nondeterministic transition function δ of an ESTS supports underspecification and thus multiple pos-
sible behaviors within the STS. This underspecification may be totally or partially resolved during design
time by the developer or during runtime by the system itself choosing transitions according to some circum-
stances, sensor input, etc.

Compared to the above defined CFSTS this notion of ESTS is rather general. It embodies all data, control,
and event states on a very general level and thus can describe interference of parallel executions as well as

62

Example 6.1.4 (Factorial example, Part 1)

extend CFSTS

erg, n, x ∈ UVAR, vtype(erg) = vtype(n) = vtype(x) = int,
fac,mult ∈ UOMNAME
Factorial ∈ UCLASS, erg ∈ attr(Factorial),
Ofac,Omult ∈ UOPN,
nameOf (Ofac) = fac, nameOf (Omult) = mult,
classOf (Ofac) = Factorial = classOf (Omult),
parTypes(Ofac) = [int] = parTypes(Ofac),
resType(Ofac) = int, resType(Omult) = Void,

Mfac,Mmult ∈ UMETH
definedIn(Mfac) = Factorial = definedIn(Mmult),
parNames(Mfac) = [n], parNames(Mmult) = [x],
localsOf (Mfac) = [] = localsOf (Mmult),
impl(Ofac) = Mfac, impl(Omult) = Mmult,
{P11, . . . ,P22} ⊆ UPC,
pcOf (Mfac) = {P11, . . . ,P19}, pcOf (MMult) = {P21,P22},
(pcOf (Mfac) ∪ pcOf (MMult)) ∩ StartPC = {P11,P21},
(pcOf (Mfac) ∪ pcOf (MMult)) ∩ FinishPC = {P19,P22},
(pcOf (Mfac) ∪ pcOf (MMult)) ∩WaitReturnPC = {P15}

This is a system model based definition of the class diagram (part 1).

handling of incoming events in the buffer. In contrast to an CFSTS, an ESTS embodies the complete object
state including control state and event buffer.

6.2.2 Variation Point: Deterministic ESTS

An ESTS makes it possible to further constrain behavior, allowing underspecification at desired places.
Firstly, the system model itself is highly underspecified, including behavioral underspecification. Secondly,
ESTS are themselves nondeterministic and underspecified.

When we know that objects behave in a deterministic way, we may constrain ESTS to be deterministic as
shown in Variation Point 6.2.2; Definition B.3.2 introduces DSTS. Underspecification then only arises from
the fact that we do not know exactly which ESTS is the correct implementation.

A deterministic object behavior also means that the scheduling of threads and the handling of events are
deterministic. This is not necessarily the case in all realizations. For example, a time sliced scheduling of
several threads can better be handled nondeterministically.

6.2.3 Variation Point: Composing CFSTS to ESTS

If the methods of an object are described using CFSTS, we can compose those together to form the overall
ESTS. Such an ESTS also contains the scheduling, the start and end of method executions, and the reception
of events of any form. As an ESTS is relatively complex, we define the transition function of the ESTS in
several smaller steps:

• ESTSin: reception of an event (see Variation Point 6.2.3),

63

Example 6.1.5 (Factorial example, Part 2)

extend CFSTS

∀ op ∈ UOPN, oid ∈ classOf (op)& : impl(op) = Mfac∧
cfsts(Mfac, oid, th) = (S, I,O, δ, s0)⇒

S = {(o, fr) ∈ objects(oid)× framesOf (m) | fr = (oid, ∗, ∗, ∗, ∗, ∗)}∧
s0 = {(o, (∗, ∗, ∗, start, ∗)) ∈ S | start ∈ StartPC}∧
I ⊇ {†(th), (oid, fac, ∗, ∗, ∗), (oid,mult, ∗, ∗, ∗), (oid, void, ∗, ∗)}
O ⊇ {(oid,mult, ∗, oid, ∗), (∗, void, oid, ∗), (∗, r, oid, ∗) | r ∈ N}
δ((o, (oid, fac, pars, lv,P11, c)), †(th)) 3

((o, (oid, fac, pars, lv⊕ [erg = 1],P12, c)), ε)
δ((o, (oid, fac, pars, lv,P12, c)), †(th)) 3

((o, (oid, fac, pars, lv,P13, c)), ε)
δ((o, (oid, fac, pars, lv,P13, c)), †(th)) 3

((o, (oid, fac, pars, lv,P14, c)), ε) when pars.n > 1
δ((o, (oid, fac, pars, lv,P13, c)), †(th)) 3

((o, (oid, fac, pars, lv,P18, c)), ε) when pars.n ≤ 1
δ((o, (oid, fac, pars, lv,P14, c)), †(th)) 3

((o, (oid, fac, pars, lv,P15, c)), (oid,mult, (pars.n), oid, th))
δ((o, (oid, fac, pars, lv,P15, c)), (oid, void, oid, th)) 3

((o, (oid, fac, pars, lv,P16, c)), ε)
δ((o, (oid, fac, pars, lv,P16, c)), †(th)) 3

((o, (oid, fac, pars⊕ [n = pars.n− 1], lv,P17, c)), ε)
δ((o, (oid, fac, pars, lv,P17, c)), †(th)) 3

((o, (oid, fac, pars, lv,P13, c)), ε)
δ((o, (oid, fac, pars, lv,P18, c)), †(th)) 3

((o, (oid, fac, pars, lv,P19, c)), (c, o.erg, oid, th))

This is a system model based definition of the CFSTS for methods mult and fac (part 2). An error
completion is not shown.

Definition 6.2.1 (Event-based STS for objects)

EventSTS
extend STSStepper

ests : UOID→ STS(S, I,O)

∀ oid ∈ UOID :
ests(oid) ∈ STS(states(oid), eventsIn(oid) ∪ †(UTHREAD), eventsOut(oid))

ests assigns a possibly underspecified STS to each oid, thus allowing to describe externally visible behav-
ior for an object as a state machine.

• ESTSstep: execution of a step within a method specified through an CFSTS (see Variation Point 6.2.4),

• ESTScall: start of a method execution based on method call (see Variation Point 6.2.5), and

• ESTSend: end of a method execution (after return was sent; see Variation Point 6.2.6).

64

Variation Point 6.2.2 (Deterministic ESTS for deterministic objects)

[DeterministicESTS]
extend EventSTS

∀ oid ∈ UOID : ests(oid) ∈ DSTS(∗, ∗, ∗)

Deterministic object behavior described by deterministic ESTS.

In this list we have omitted the handling of events other than method calls like e.g. asynchronous signals.
For these there are a number of realization possibilities, and we refrained from stating formal definitions
since we want to concentrate on conventional method calls in this variation point. The following Variation
Points 6.2.3 to 6.2.6 belong together and describe the above mentioned aspects of the behavior of one object.
Variation Point 6.2.3 specifies the signatures of the δ transition functions as well as the processing of an

Variation Point 6.2.3 (ESTSin)

[ESTSin]
extend CFSTS,ESTS
context oid ∈ UOID

δin, δstep, δcall, δend, δidle,∈
states(oid)× (eventsIn(oid) ∪ †(UTHREAD))→

P(states(oid)× eventsOut(oid)∗)

δin((ds, cs, es),m) = {(ds, cs, addlast(es,m))}
δin((ds, cs, es), †(th)) = ∅

δidle((ds, cs, es),m) = ∅
cs(th) = Stack[] ∧ (λm.thread(m) = th) c©es = Buffer[]⇒
δidle((ds, cs, es), †(th)) = ∅

δin takes an incoming event m and puts it into the event buffer es of object oid. δidle is used if no other
step can happen.

incoming event (stored in the event buffer). Variation Point 6.2.4 runs one step within a currently active
method execution; it adapts the object state, changes the currently active frame, e.g., pointing to another
program counter, etc. This step heavily relies on the definition of the CFSTS of the currently running
method.
Variation Point 6.2.5 takes a call event from the buffer and starts the execution of the call by adding an
appropriate frame on the stack. The scheduling decides through sending repeated steps of form †(th) which
thread shall proceed and therefore also which events to process from the buffer.

Variation Point 6.2.6 checks whether the program counter pc denotes the end of the computation in a
method. In this case, the frame is removed from the stack. Note that in this step no return is sent to the
caller: It is assumed that such a return has been sent already. Therefore, the same mechanism can be used
to finish the asynchronous invocation of a method execution that does not return an event at all.

In Variation Point 6.2.7, the parts of the transition function for the ESTS are composed together in a
complete definition of what an ESTS may do. Note that this is a union of state transition functions and not
a composition of state transition systems.

The ests defined so far is not fully specified but open to additional clarifications, especially to define
scheduling, start states of objects and similar things. In order to further constrain the actual ESTS, we can

65

Variation Point 6.2.4 (ESTSstep)

[ESTSstep]
extend ESTSin

context oid ∈ UOID

∀(ds, cs, es) ∈ states(oid),ms ∈ eventsIn(oid) :
δstep((ds, cs, es),ms) = ∅
δstep((ds, cs, es), †(th)) =
{((ds⊕ [oid = obj′], setframe(cs, th, fr′), es), out′) |
cfsts(methodOf (fr), oid, th) = (S, I,O, δ, s0)∧
((obj′, fr′), out′) ∈ δ((ds(oid), top(cs(th))), †(th))}

Helper functions:
methodOf ((callee,mn, ∗, ∗, ∗)) = m where

nameOf (m) = mn ∧ classOf (m) = classOf (callee)
setframe(cs, th, fr′) = cs⊕ [th = push(pop(cs(th)), fr′)]

δstep makes an execution step on object oid in a thread th (which is not further specified).
obj′ is the new object state, fr′ the new frame state on the stack, out′ the output, m the currently running
method and cfsts(m, oid, th) the CFSTS describing the step.
methodOf gives the method of a frame and setFrame updates a frame on the stack of the appropriate
thread.

Variation Point 6.2.5 (ESTScall)

[ESTScall]
extend ESTSstep

context oid ∈ UOID

∀(ds, cs, es) ∈ states(oid),ms ∈ eventsIn(oid), th ∈ UTHREAD :
δcall((ds, cs, es),ms) = ∅
δcall((ds, cs, es), †(th)) =
{((ds, addframe(cs, th, fr′), es′1 + +es′2), ε) |
es = es′1 + +[ms] + +es′2∧
ms = MsgEvent(oid,mn, par, caller, th)∧
fr′ = (oid,mn, ∗ ⊕ recparNames(m)(par), ∗, caller)∧
m = methodOf (fr′) ∧ nameOf (m) = mn∧
cfsts(m, oid, th) = (S, I,O, δ, s0)∧
(ds(oid), fr′) ∈ s0}

Helper functions:
addframe(cs, th, fr′) = cs⊕ [th = push(cs(th), fr′)]

δcall invokes a method call with new frame fr′ on object oid by removing a call event ms with appropriate
thread th from the buffer, setting up frame fr′ such that it starts in a start state of cfsts(m, oid, th).

enforce the transition function δ to be a subset of the behavior defined above. A further constraint is for
instance the definition of a scheduling strategy.

By construction, each arriving step forces the ESTS to do something useful on an existing thread. Only if
all threads and the event buffer are empty, the state transition diagram is allowed to idle.

66

Variation Point 6.2.6 (ESTSend)

[ESTSend]
extend ESTScall
context oid ∈ UOID

∀(ds, cs, es) ∈ states(oid),ms ∈ eventsIn(oid), th ∈ UTHREAD :
δend((ds, cs, es),ms) = ∅
δend((ds, cs, es), †(th)) =
{((ds, popframe(cs, th), es), ε) |
fr = top(cs(th)) = (oid, ∗, ∗, pc, ∗) ∧ pc ∈ FinishPC}

Helper functions:
popframe(cs, th) = cs⊕ [th = pop(cs(th))]

δend removes a stack frame fr after all computation has actually finished, because the program counter pc
is a finishing one.

Variation Point 6.2.7 (Composing an ESTS)

[ESTSComp]
extend EventSTS
extend ESTSend

∀ oid ∈ UOID :
ests(oid) = (S, I,O, δ, s0)⇒
∀ s ∈ S, i ∈ I : δ(s, i) ⊆
δin(s, i) ∪ δstep(s, i) ∪ δcall(s, i) ∪ δend(s, i) ∪ δidle(s, i)∧

s0 ⊆ {(ds, (λ th.Stack[]),Buffer[]) | ds ∈ objects(oid)}

ests assigns a possibly underspecified ESTS to an object. This describes the behavioral implementation
of that object as a state machine.

6.2.4 Variation Point: Basic Scheduling in the ESTS

We have so far not clarified who is deciding which object and which thread is going to make the next
execution step. This can be decided individually for each object, or in a regional or centralized manner.
In the following Variation Point 6.2.8, we show the signature of a Scheduling-STS that can be used to
determine the order of execution.

Internally, such a Scheduling-STS may use round robin, priorities, and a variety of other techniques to
determine which thread to activate next. It may also handle synchronization and blocking between objects
and threads.

The pseudo-event †(th) which can be consumed by all ESTS resembles a trigger for an execution step of
the ESTS. The state the scheduler has access to or is storing information is left unspecified; it should at least
comprise the buffer and the control state of the object. This allows, e.g., to identify the set of threads that
can execute a next step by examining the pc of the active stack frame. The pc should not be an element of
FinishPC or a WaitReturnPC.

As context switching is relatively expensive in today’s computer architectures, one might include a
counter into a state and while counting down on each tick, the scheduler just keeps the last thread acti-
vated until zero is reached and another thread is selected.

67

Variation Point 6.2.8 (Scheduling in the ESTS)

[ESTSScheduling]
extend ESTSComp

scheduler : UOID→ STS(S, {†}, †(UTHREAD))

scheduler(oid) = (S, {†}, †(UTHREAD), δ, s0)⇒
∀ δ : s

i/o−→ t⇒ #o = 1

6.3 Summary for Event STS

The theory built so far is summarized in Definition C.1.7. Figure 6.2 illustrates the theory dependencies and
variation points.

State

ESTS
EventSTS

STSStepper

ControlFlowPCs

CFSTS

DeterministicESTS

ESTSin

ESTSstep

ESTScall

ESTSend

ESTSComp

ESTSScheduling

CentralScheduler

SysComp

SYSSTS2 SYSSTS

Figure 6.2: Theory ESTS and its dependencies.

Although this chapter contains rather detailed descriptions of how to derive an ESTS from a method
implementation given as a CFSTS, the actual definitions are rather few. This is largely credited to the fact
that CFSTS are defined as variation points and need not be used. In particular they need not be incorporated
when another type of action language should be used and mapped to an ESTS through a different kind of
mechanism.

6.4 Variation Point: Composing ESTS to System STS

According to Definition 6.2.1, each object is equipped with an ESTS. All these ESTS can be composed to
form a transition system for the whole system that, among other things, explicitly describes scheduling. In
order do this, we assume a scheduler that selects runnable threads in objects. The scheduler, in principle,
may examine the whole system state in order to schedule the next object and thread combinations. This
central scheduler is defined in Variation Point 6.4.1.

In the scheduler, a variety of scheduling strategies can be encoded. The following list sketches some (and
not necessarily all) possibilities.

• In UML terms, run-to-completion execution can be achieved if the scheduler schedules the same
thread that is handling a call in some object as long as the call is not completely processed (partially

68

Variation Point 6.4.1 (Central system scheduling)

[CentralScheduler]
extend ESTS

scheduler : STATE → P(UOID× UTHREAD)

also depends on δcall, δstep in case of object recursion). If state-relevant and state-irrelevant calls can
be distinguished, more concurrency may be allowed in one object.

• If we assume that objects are mapped to resources (e.g., processors), the number of concurrently
schedulable threads may additionally be restricted.

• A simple variant of round-robin scheduling would correspond to alternately scheduling all runnable
threads (possibly selecting one thread for each resource).

• (Dynamic) priorities may be assigned to threads, so priority-based scheduling becomes possible.

• More sophisticated strategies can be encoded if we assume a system clock and that each step in
the system run consumes time. Each step of the system corresponds to a “call” or “interrupt” to
the scheduler that, given the current time, may allow the last thread to continue or to schedule a new
thread (because, e.g., the time in a time slice is up, a higher- priority thread was scheduled periodically,
preempting a low-priority thread). Current time may also be specific for individual resources in case
of imprecise clocks for which a maximum deviation could be specified. This current time could then
also be made available to objects using an API.

• If each object had a separate thread, this could be interpreted as task or process. If furthermore the
number of tasks in the system were fixed, classical scheduling strategies from real-time systems (rate
monotonic, earliest deadline) together with their schedulability analysis could be realized.

In Variation Point 6.4.2 a definition for a state machine for the whole system is given. Basically, the
system transitions from one state to another while storing not transmitted events in a buffer. The scheduler
selects runnable threads in objects. If there is an event in the buffer whose receiver belongs to the scheduled
objects, the object’s state machine is executed, contributing to the resulting state s′. If no such method is
found, the scheduled object’s state machine is also executed but its input is †(th), resulting in a execution
step of the state machine. All objects not scheduled this time, do not change their state. All events that have
be produced are stored in the modified buffer buf ′ in which all consumed events have been removed.

In Variation Point 6.4.3 an alternative definition for the system state machine is given. In this definition it
is assumed that the individual state machines for objects may process a list of inputs. The system instantly
delivers all produced events and does not need to carry them in an extra buffer as in Variation Point 6.4.2. If
an object was scheduled by the scheduler, it is allowed to make a transition as it received †(th) as an input.
Additionally, all objects receive the produced events in the same step. This does not lead to an inconsistent
feedback because events are stored in the object’s buffer anyway. The last condition ensures that objects
have only stored the events and did not make further state changes.

The Variation Point 6.4.4 introduces a notion of component in the context of a system. Any subset of
objects (e.g., a subset of objects with the same scheduling strategy, or a group of objects realizing a certain
system behavior) can be regarded as a component.

69

Variation Point 6.4.2 (System STS)

[SYSSTS]
extend CentralScheduler

SYSSTS = (δsys, INITS)

INITS ⊆ STATE
INITS 6= ∅
δsys ∈ STATE × Buffer(UEVENT)→ P(STATE × Buffer(UEVENT))
δsys(s, buf) = {(s′, buf ′) |

oat = scheduler s ∧
∃ out :
∃(oid, th) ∈ oat : ∃m ∈ buf : m 6∈ buf ′ ∧ receiver(m) = oid ⇒
(s′ |oid, ∗) ∈ ests(oid).δ(s |oid,m)
∧ ∃(oid, th) ∈ oat : @m ∈ buf : receiver(m) = oid ⇒
(s′ |oid, out |oid) ∈ ests(oid).δ(s |oid, †(th))
∧ ∀ oid ∈ oids(π1(s)) : (oid, ∗) 6∈ oat⇒

s′ |oid = s |oid
∧ ∀m ∈ buf ′ : m ∈ buf ∨ m ∈ out}

Variation Point 6.4.3 (System STS alternative)

[SYSSTSalt]
extend CentralScheduler

SYSSTS = (δsys, INITS)

INITS ⊆ STATE
INITS 6= ∅
δsys ∈ STATE → P(STATE)
δsys(s) = {s′′ |

oat = scheduler s ∧
∀ oid ∈ oids(π1(s)) : ∃ out, s′ :
∃ th : (oid, th) ∈ oat⇒ (s′ |oid, out |oid) ∈ ests(oid).δ(s |oid, [†(th)])
∧ (s′′ |oid, ∗) ∈ ests(oid).δ(s′ |oid, out |oid)
∧ πi(s′′) = πi(s′), i = 1, 2
}

Variation Point 6.4.4 (Components in a system context)

[SysComp]
extend SYSSTSalt

COMPONENT = (comp, δcomp)

∀ s ∈ STATE, comp ⊆ oids(π1(s)) :
δcomp(s |comp) = {(s′ |comp) | s′ ∈ δsys(s)}

70

7 Timed Object Behavior

One of the main features of the system model is its compositionality. This means that we can describe
object behavior on an individual basis as well as in any (meaningful) group. So we can define behavior for
compositions of groups of objects into larger components. For this purpose we use the time-aware version
of STS, called timed STS (or TSTS) as defined in Appendix B.4.

We assume a discrete global time available. Each step of transition of the TSTS corresponds to a progress
of one time unit. A system executes in steps, each consuming a fixed amount of time. Timed state transition
systems (TSTS) are transition systems that deal with this kind of paradigm. Roughly speaking, in each step
a finite set of input events is provided to a TSTS, and a finite set of output events is produced by the TSTS.

As a further mechanism, we introduce communication channels which allow us to model the interaction
(communication flow) between parts of the objects and thus describe the behavior of objects on a very fine
grained level.

As a general result of this report, we have a complete description of how systems are decomposed into
objects, what states objects may have, and how objects interact.

7.1 Object Behavior in the System Model

One crucial question is the choice of the appropriate communication or interaction mechanism. Two basic
flavors are asynchronous and synchronous communication. While there is still debate ongoing, we argue in
Appendix B.1 that the asynchronous approach seems to be the more abstract. As both approaches can model
each other, we have already encoded synchronous method calls into an asynchronous message passing1

mechanism. In particular, our time-based approach allows us to use a simple abstraction on the time scale
to look at communication as being synchronous.

In our system model the object and component instances cooperate by asynchronous message passing.
Method invocation is already modeled by the exchange of two events, the method invocation event and the
method return event.

As Appendix B describes, communication between objects is dealt with by channels. Channels, on the
one hand, help to compose groups of objects into larger units and hide their internal communication. On
the other hand, UML provides linguistic constructs like “pins” in some of its diagrams; these pins resemble
communication lines between objects and can be mapped to these channels.

A communication channel is a unidirectional communication connection between two objects. We model
the channels in the system model as a universe and leave open how many channels are used between objects.

Each channel has a name, e.g., c ∈ UCN, and the type of events that may flow through c is given by
csort(c). Each object has a number of incoming and outgoing channels and each event knows through
which channel it flows; see Definition 7.1.1.

The existence of the sender and the receiver function has an important consequence. Each event knows
on which channel it flows and from which object it originates. From that we can conclude in Lemma 7.1.2
that each channel can be in the output signature of only one object. This lemma ensures the applicability
of composition techniques for TSTS that only work if the output channels of composed objects are disjoint
(see the Definition of composition in B.2.13).

Based on the definition of channels and their type, the behavior of a single object is defined in Defini-
tion 7.1.3.

1Message passing is the general term; in our case events (which include message events) are passed.

71

Definition 7.1.1 (Channel signatures of objects)

Channels
extend State
use Focus

UCN
sender, receiver : UCN → UOID
channel : UEVENT → UCN
inC, outC : UOID→ P(UCN)
csort : UCN → P(UEVENT)

∀m ∈ UEVENT, oid ∈ UOID :
sender(m) = oid ⇒ sender(channel(m)) = oid
receiver(m) = oid ⇒ receiver(channel(m)) = oid
∀ c ∈ UCN :

inC(oid) = {c | receiver(c) = oid}
outC(oid) = {c | sender(c) = oid}
csort(c) = {m ∈ UEVENT | channel(m) = c}

UCN denotes the universe of channel names.
sender and receiver assign a sending and a receiving object to each channel.
channel assigns a channel to each event.
inC, outC denote the channel signature of each object.
The type of each channel csort(c) describes the possible events flowing over that channel.

Lemma 7.1.2 (Channels disjoint)

use Channels

∀ a, b ∈ UOID : a 6= b⇒ outC(a) ∩ outC(b) = ∅

follows from the definition of outC and channel.

Definition 7.1.3 (Behavior of individual objects)

ObjBehavior
extend Channels

beh : UOID→ Bcsort(I,O)

∀ oid ∈ UOID :
beh(oid) ∈ Bcsort(inC(oid), outC(oid))

beh(oid) denotes the behavior of one single object.

Definition 7.1.3 is based on the assumption of a fine enough time granularity, i.e., so fine that the output
in a step does not depend on the input received in that step. This way, strong causality between input and
output is preserved. The composition of state machines is moreover simplified since feedback within one

72

time unit is ruled out and thus causal inconsistencies are avoided. Even so, we are able to abstract away
from the actual (real-)time occurrence of events and only consider the untimed behavior of objects.

Definition 7.1.4 (Behavior of object compositions)

CompBehavior
extend ObjBehavior

beh : P(UOID)→ Bcsort(I,O)
inC, outC : P(UOID)→ P(UCN)

∀ os ⊂ UOID :
I = inC(os) = {c | receiver(c) ∈ os ∧ sender(c) 6∈ os}
O = outC(os) = {c | sender(c) ∈ os ∧ receiver(c) 6∈ os}
beh(os) =

⊕
oid∈os beh(oid)

beh(os) denotes the behavior of a group of objects where internal communication is not visible anymore.
inC describe the incoming channels for a group of objects, outC the outgoing channels.

Definition 7.1.4 provides a flexible concept of components including, e.g., classical sequential systems
(in this case, there is only one input and one output channel). For instance, we may restrict the input and
output events in such a way that in each step at most one input event is received or one output event is
dispatched. At the other extreme, we can model highly concurrent systems with a large number of input and
output events in one state transition step.

7.2 State-based Object Behavior

While the behavior of an object oid is precisely defined as beh(oid), its relationship to a state-based view on
object behavior still needs to be clarified. For this purpose, we attach a timed state transition system to each
object in Definition 7.2.1.

Definition 7.2.1 (Behavior as TimedSTS)

TimedSTS
extend CompBehavior

tsts : UOID→ TSTScsort(S1, I1,O1)
tsts : P(UOID)→ TSTScsort(S, I,O)

∀ oid ∈ UOID :
tsts(oid) ∈ TSTScsort(states(oid), inC(oid), outC(oid))
S(tsts(oid)) = beh(oid)
∀ os ⊂ UOID :

tsts(os) =
⊕

oid∈os tsts(oid)

tsts(oid) denotes the TSTS based description of behavior of one single object.
The definition is then generalized to a set of objects.

According to Definition 7.2.1, each object oid ∈ UOID can be described by a nondeterministic TSTS
as introduced in Appendix B.4. S(tsts(oid)) = beh(oid) states that the behavior of each object is defined
by an appropriate tsts(oid). Appendix B.4.3 shows that the composition of TSTS and of I/O-behaviors is

73

compatible, which means that we can switch between a state-based and a purely I/O-based view of object
behavior and specify individual objects or meaningful groups (components) at will.

Note that each object oid has exactly one single timed state transition system tsts(oid). However, as
tsts(oid) is a nondeterministic state machine, it allows various forms of underspecification. Therefore, there
is no need to add a further concept of underspecification by, e.g., assigning a set of possible TSTS to each
object. Any UML model, however, may have an impact on the elements of a TSTS. For instance, the sets
of reachable states can be constrained, the initial states restricted to be a singleton, or the nondeterminism
reduced by enforcing a behavior that is deterministic in reaction and time.

With this last part of the system model, we now have a TSTS for the whole system that includes all
snapshots and all system states and thus is capable of describing any behavioral and structural restrictions
by tsts(UOID).

Note that we have a closed world assumption now: The overall system transition system tsts(UOID) does
not have external channels anymore, but incorporates all “objects”. This also includes objects that have
direct connections to interfaces to other systems, mechanical devices or users and thus can act as surrogates
for the context of the system. In [Rum96] we have discussed how to deal with this to model open, reactive
systems in a closed world, and also what the advantages are.

7.3 Mapping Event STS to Timed STS

As a final step, we investigate variants of mapping the event-based STS as given in Definition 6.2.1 to timed
STS from Definition 7.2.1.

7.3.1 General Mapping of Event STS to Timed STS

Definition 7.3.1 gives a general description of the relationship between the ESTS and the TSTS of any
object. We can concentrate on the relation between the transition function of each TSTS, as the input and
output signatures as well as the state space are already defined through ests(oid) and tsts(oid). In particular
both have the same state basis and the I/O-signatures are given by the channel sorting function csort.

The idea of the mapping between δe and δt is that one step in δt equals a sequence of steps in δe. This
sequence, of length say k, produces intermediate states sj, a sequence of outputs oj and is triggered by a
sequence of inputs ij (1 ≤ j ≤ k).

These inputs also contain †-pseudo events that resembles stepwise progress of the ESTS. In the used
definition for tsts, these steps are not coming from outside but are freely chosen within the definition of δt.
The scheduling in this version is embedded in the transition function of the TSTS.

An important constraint of the mapping is that δt is input enabled. This means, δt describes a reaction on
any sequence of input events. However, Definition 7.3.1 only states that some of the paths of δe need to be
taken, but not necessarily all of them. This gives us freedom to choose appropriate scheduling strategies by
disregarding certain sequences of steps (which are modelled through †(th)).

Whatever scheduling strategy will be used, however and by construction, the resulting TSTS must be time
guarded. This means, e.g., that the return event for a method call can occur at the earliest one time step after
the method call was received. That is why we store the method call in the buffer before we actually start
processing it.

7.3.2 Variation Point: Constraining the Timed STS

The above definitions permit the definition of various scheduling strategies. We can constrain δt to, e.g.,
allow only one step per thread per time unit, or handle a series of steps in one thread, but none in any other,
etc.

74

Definition 7.3.1 (General mapping between ESTS and TSTS)

ESTStoTSTS
use ESTS
extend TimedSTS

∀ oid ∈ UOID,
ests(oid) = (S, Ie,Oe, δe, s0e),
tsts(oid) = (S, T (It), T (Ot), δt, s0t) :
Se = St ∧ s0e = s0t∧
δt : s

i/o−→ t⇒
∃ k ∈ N0,mj ∈ Ie, sj ∈ Se, oj ∈ (Oe)∗ :
i = cdist(UEVENT c©mj)∧
o = cdist(aj oj)∧
s0 = s ∧ sk+1 = t∧
∀ 0 ≤ j < k : δe : sj

mj/oj−→ sj+1

cdist : (I → P(M))→ M∗ → T (I)

∀ s ∈ M∗, c ∈ I :
cdist(s).c = csort(c) c©s

Clarifies the relationship between ests(oid) and tsts(oid) by describing the set of possible TSTS that may
belong to an ESTS.
cdist is used to distribute a stream of events over their channels.

Variation Point 7.3.2 (Scheduling in the TSTS)

[TSTSScheduling1]
extend ESTStoTSTS

∀ tsts(oid) = (S, T (It), T (Ot), δt, s0t) :

δt : s
i/o−→ t⇒

#(†(UTHREAD) c©i) = 1

Variation Point 7.3.2 constrains the scheduling to exactly one step per time frame and thus aligns the
ESTS stepping with the TSTS time frames. However, it does not yet specify any fairness strategies for the
threads waiting to execute.

We omit further specifications of these strategies here as they are known from operating systems.

7.4 The System Model Definition

The last definition in this report finally introduces the universe of system models in Definition 7.4.1.

7.5 Summary for Object Behavior with Timed STS

The final part of the theory is summarized in theory TSTS in Definition C.1.8. Figure 7.1 illustrates the
theory dependencies and variation points. The complete picture, including the Definition of SYSMOD, was
already presented in Figure 1.2.

75

Definition 7.4.1 (Definition of the system model as a universe)

SYSMOD
extend ESTS,TSTS

SYSMOD

sm ∈ SYSMOD⇒
sm =
(UTYPE,UVAL,CAR,
UVAR, vtype, vsort,
UCLASS,UOID, attr, oids, classof ,
sub,&,
UASSOC, classes, extraVals, relOf ,
UOPN,UOMNAME, nameOf , classof , parTypes, params, resType,
UMETH,UPC, nameof , definedin, parNames,
localNames, resType, pcOf , impl,

UTHREAD,
UVENT, eventIn, eventsOut,
UMESSAGE,MsgEvent,USIGNAL,
ests,
UCN,
tsts)

such that all constraints defined in this document are fulfilled.

State

TSTS

Channels

ObjBehavior

CompBehavior

ESTStoTSTS
TimedSTS

TSTSScheduling1

Figure 7.1: Theory TSTS and its dependencies.

76

8 Concluding Remarks

In this report, we have introduced the system model as a mathematically defined semantic domain for the
UML.

It describes structure and behavior of object systems on a very detailed and fine-grained basis. It uses the
general notion of timed state transition systems and I/O-behaviors which both are integrated with the data,
control and event stores. As a general result of the theory of system models introduced in this document,
we have a complete description of how systems are decomposed into objects, what states objects may have
and how objects interact. As motivated in the introduction, we have developed the mathematical theory in
layers, each building up an algebra that introduces some universe of elements, functions and laws for these
functions.

We have chosen this approach because we want a semantics that is not biased by the choice of a concrete
formal language or tool. Even the use of mathematical theories probably will bias the semantics a little but
we hope as little as possible. Such bias easily creeps in and we carefully tried to avoid it. In particular, we
did not address executability, because this includes one of the biggest biases a modeling language can have:
A model shall have the ability for underspecification. It shall be open for a specification of many different
implementations. An executable semantics for an underspecified UML model must therefore necessarily
contain implicit choices added by the semantic mapping.

To prevent the executability bias, we have chosen a specific style of description. The form of description
used throughout this document allows us to leave quite a number of definitions open. We have usually
introduced a universe and then characterized the properties of its elements without fully determining how
many elements it has or how these elements look like. Sometimes, we only described a subset of the elements
and allow other kinds of elements to be in the universe as well (e.g., the universes of events, messages and
values are defined in such a way).

This gives us the chance to specialize variation points according to specific situations. To put it in UML
jargon, we could for example define a “system model profile” that specializes the general definitions to
sequential, single threaded systems, to static systems without creation of new objects, or to systems without
subclassing, etc.

While the system model is an underlying basis for these kinds of systems, it does not provide such
specialization directly; this is matter of further work. Indeed, as one of the results of this work, we have
been able to make a number of variation points explicit. Although there are a lot more variation points to
explore and their bandwidth to clarify, we regard this approach as a first important step to the formalization
and clarification of variation points.

On the other hand, the complexity of larger parts of the system model has shown that the integration
of objects, threads, state-based behavior and concurrency is complex, has many variations and is therefore
somewhat arbitrary. It is particularly complex to model the possible interactions between these, leading us
to the assumption that it is particularly difficult to master these not so well integrated concepts. It might be
worthwhile rethinking a better integration.

The system model defined in [BCR06, BCR07a, BCR07b] has actively been used to define the semantics
of UML sublanguages like class diagrams [CGR08a] and Statecharts [CGR08b]. In [CDGR07] a simulator
for UML models has been developed based on the system model definitions. This work has been carried
out in the context of the DFG rUML project. In [CD08] UML action are formalized using the system model
as a semantic domain. The system model also forms the basis for characterizing the semantics of model
composition [HKR+07] as part of the MODELPLEX project. Using the system model definitions revealed
strengths and potentials for improvement. The experiences made led to the system model, version 2, defined

77

in this document.

8.1 Further Extensions

Of course this system model that can be seen as a hierarchy of algebras may and probably should be extended
by adding further functional machinery to ease description of the mapping of UML constructs to the system
model. However, we wanted to keep the system model rather simple and therefore did not concentrate on
this additional machinery very much. “Users” of the system model are really invited to add whatever they
feel appropriate.

There are also a number of loopholes and particular variation points that can be further investigated by
providing additional machinery to clarify a mapping of UML concepts to the system model.

A number of higher-level concepts could be added to the system model more or less directly. As we
have demonstrated with associations, which are manifested as retrieval functions on the object store, we
might add a basic set of actions and activities or components thereof like the “pins” of the activity diagrams,
features like in [KPR97], or workflow elements as in [RT98].

We wish to thank a number of colleagues, and especially Bran Selic, Michelle Crane, Jürgen Dingel, Gre-
gor von Bochmann, Gregor Engels, Alain Faivre, Christophe Gaston, Sébastien Gérard and Martin Schindler
for their valuable help.

78

Bibliography

[BCR06] Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Semantics of UML – Towards
a System Model for UML: The Structural Data Model. Technical Report TUM-I0612, Institut
für Informatik, Technische Universität München, June 2006.

[BCR07a] Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Semantics of UML – Towards
a System Model for UML: The Control Model. Technical Report TUM-I0710, Institut für
Informatik, Technische Universität München, February 2007.

[BCR07b] Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Semantics of UML – Towards
a System Model for UML: The State Machine Model. Technical Report TUM-I0711, Institut
für Informatik, Technische Universität München, February 2007.

[BDD+93] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas Gritzner, and Rainer
Weber. The Design of Distributed Systems - An Introduction to FOCUS. Technical report,
TUM-I9202, SFB-Bericht Nr. 342/2-2/92 A, 1993.

[BF98] Jean-Michel Bruel and Robert B. France. Transforming UML models to Formal Specifi-
cations. In Pierre-Alain Muller and Jean Bézivin, editors, International Conference on the
Unified Modelling Language: Beyond the Notation (UML’98, Proceedings), volume 1618 of
Lecture Notes in Computer Science. Springer, 1998.

[BG92] Gerard Berry and Georges Gonthier. The Esterel Synchronous Programming Language: De-
sign, Semantics, Implementation. Science of Computer Programming, 19(2):87–152, 1992.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin. Systems,
Views and Models of UML. In Proceedings of the Unified Modeling Language, Technical
Aspects and Applications. Physica Verlag, Heidelberg, 1998.

[BHH+97] Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein, Barbara Paech, Bernhard
Rumpe, and Veronika Thurner. Towards a Formalization of the Unified Modeling Language.
In Proceedings of ECOOP’97 – Object Oriented Programming. 11th European Conference.
Springer-Verlag, LNCS 1241, 1997.

[BS01] M. Broy and K. Stoelen. Specification and Development of Interactive Systems. Focus on
Streams, Interfaces and Refinement. Springer Verlag Heidelberg, 2001.

[CCGM07] Marco Cadoli, Diego Calvanese, Giuseppe De Giacomo, and Toni Mancini. Finite Model
Reasoning on UML Class Diagrams Via Constraint Programming. In Roberto Basili and
Maria Teresa Pazienza, editors, AI*IA, volume 4733 of Lecture Notes in Computer Science,
pages 36–47. Springer, 2007.

[CD08] Michelle L. Crane and Juergen Dingel. Towards a Formal Account of a Foundational Subset
for Executable UML Models. In Models 2008, 2008. to appear.

[CDGR07] M. V. Cengarle, J. Dingel, H. Grnniger, and B. Rumpe. System-Model-Based Simulation of
UML Models. In Proceedings Nordic Workshop on Model Driven Engineering (NW-MODE
2007), 2007.

79

[CGR08a] Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Semantics
of Class Diagrams. Technical Report 2008-04, Carl-Friedrich-Gauß-Fakultät, Technische
Universität Braunschweig, 2008.

[CGR08b] Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Semantics of
Statecharts. Technical Report 2008-04, Carl-Friedrich-Gauß-Fakultät, Technische Universität
Braunschweig, 2008.

[CK04] Marı́a Victoria Cengarle and Alexander Knapp. UML 2.0 Interactions: Semantics and Refine-
ment. In Jan Jürjens, Eduardo B. Fernandez, Robert France, and Bernhard Rumpe, editors,
3rd Int. Wsh. Critical Systems Development with UML (CSDUML’04, Proceedings). Techni-
cal Report TUM-I0415, Institut für Informatik, Technische Universität München, 2004.

[DJPV03] Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva. Understanding UML:
A Formal Semantics of Concurrency and Communication in Real-Time UML. In Frank
de Boer, Marcello Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Proceed-
ings of the 1st Symposium on Formal Methods for Components and Objects (FMCO 2002),
volume 2852 of LNCS Tutorials, pages 70–98, 2003.

[EHS97] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL – Formal Object-Oriented Language for Com-
munication Systems. Prentice Hall, 1997.

[ELFR99] Andy Evans, Kevin Lano, Robert France, and Bernhard Rumpe. Meta-Modeling Semantics
of UML. In Proceedings of Behavioral Specifications of Businesses and Systems. Kluver
Academic Publisher, 1999.

[ESW07] Gregor Engels, Christian Soltenborn, and Heike Wehrheim. Analysis of UML Activities Us-
ing Dynamic Meta Modeling. In Marcello M. Bonsangue and Einar Broch Johnsen, editors,
FMOODS, volume 4468 of Lecture Notes in Computer Science, pages 76–90. Springer, 2007.

[FKdRdB06] Harald Fecher, Marcel Kyas, Willem P. de Roever, and Frank S. de Boer. Compositional
Operational Semantics of a UML-Kernel-Model Language. Electr. Notes Theor. Comput.
Sci., 156(1):79–96, 2006.

[FPR01] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. The UML/F Profile for Framework
Architecture. Addison-Wesley, 2001.

[FS07] Ingo Feinerer and Gernot Salzer. Consistency and Minimality of UML Class Specifications
with Multiplicities and Uniqueness Constraints. In TASE, pages 411–420. IEEE Computer
Society, 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-Wesley Professional, 1995.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System Model with
State. Technical Report TUM-I9631, Technische Univerität München, 1996.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent timed port automata. Technical Report TUM-
I9533, Technische Univerität München, 1995.

[HHRS05] Oeystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stoelen. STAIRS
towards formal design with sequence diagrams. Software and System Modeling (SoSym),
4(4):355–357, 2005.

80

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
An Algebraic View on the Semantics of Model Composition. In D. H. Akehurst, R. Vogel,
and R. F. Paige, editors, Model Driven Architecture - Foundations and Applications (ECMDA-
FA), number 4530 in LNCS, pages 99–113, Haifa, Israel, June 2007. Springer.

[Hoa83] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 26(1):100–106, 1983.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of “Seman-
tics“? Computer, 37(10):64–72, 2004.

[Kah74] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In J. L. Rosenfeld,
editor, Information Processing ’74: Proceedings of the IFIP Congress, pages 471–475, New
York, NY, 1974. North-Holland.

[Kat93] Randy H. Katz. Contemporary logic design. Benjamin-Cummings Publishing Co., Inc.,
Redwood City, CA, USA, 1993.

[KGKK02] Sabine Kuske, Martin Gogolla, Ralf Kollmann, and Hans-Jörg Kreowski. An Integrated
Semantics for UML Class, Object and State Diagrams Based on Graph Transformation. In
IFM ’02: Proceedings of the Third International Conference on Integrated Formal Methods,
pages 11–28, London, UK, 2002. Springer-Verlag.

[KKNR06] J. Kster, J. Koehler, J. Novatnack, and K. Ryndina. A Classification of UML2 Activity Dia-
grams. Technical report, IBM ZRL Technical Report 3673, 2006.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature specification and refine-
ment with state transition diagrams. In Petre Dini, Raouf Boutaba, and Luigi Logrippo, ed-
itors, Feature Interactions in Telecommunications Networks IV, June 17-19, 1997, Montréal,
Canada, pages 284–297. IOS Press, 1997.

[KRB96] C. Klein, B. Rumpe, and M. Broy. A stream-based mathematical model for distributed in-
formation processing systems the SysLab system model -. In E. Naijm and J.-B. Stefani,
editors, FMOODS’96, Formal Methods for Open Object-based Distributed Systems. Chap-
man & Hall, 1996.

[Lanar] Kevin Lano. A compositional semantics of UML-RSDS. Software and System Modeling
(SoSyM), to appear. DOI: 10.1007/s10270-007-0064-x.

[LEW97] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of abstract data types.
John Wiley & Sons, Inc., New York, NY, USA, 1997.

[Li06] Xiaoshan Li. A Characterization of UML Diagrams and their Consistency. In ICECCS, pages
67–76. IEEE Computer Society, 2006.

[LT89] N.A. Lynch and M.R. Tuttle. An Introduction to Input/Output Automata. CWI Quarterly,
2:219 – 246, 1989.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, 1994.

[MB07] Azzam Maraee and Mira Balaban. Efficient Reasoning About Finite Satisfiability of UML
Class Diagrams with Constrained Generalization Sets. In David H. Akehurst, Régis Vogel,
and Richard F. Paige, editors, ECMDA-FA, volume 4530 of Lecture Notes in Computer Sci-
ence, pages 17–31. Springer, 2007.

81

[Mey97] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall, 1997.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1982.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order
Logic. Springer, 2002.

[O’K06] Greg O’Keefe. Dynamic Logic Semantics for UML Consistency. In Arend Rensink and
Jos Warmer, editors, ECMDA-FA, volume 4066 of Lecture Notes in Computer Science, pages
113–127. Springer, 2006.

[OMG07a] Object Management Group. Unified Modeling Language: Infrastructure Version 2.1.2 (07-
11-05), 2007. http://www.omg.org/docs/formal/07-11-04.pdf.

[OMG07b] Object Management Group. Unified Modeling Language: Superstructure Version 2.1.2 (07-
11-02), 2007. http://www.omg.org/docs/formal/07-11-02.pdf.

[RT98] B. Rumpe and V. Thurner. Refining Business Processes. In H. Kilov, B. Rumpe, and I. Sim-
monds, editors, Seventh OOPSLA Workshop on Precise Behavioral Semantics, I9820. Tech-
nische Universität München, June 1998.

[Rum96] B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme. Herbert Utz
Verlag Wissenschaft, 1996. PhD thesis, Technische Universität München.

[SB06] Colin Snook and Michael Butler. UML-B: Formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol., 15(1):92–122, 2006.

[SG06] Stefan Sarstedt and Walter Guttmann. An ASM Semantics of Token Flow in UML 2 Activity
Diagrams. In Irina Virbitskaite and Andrei Voronkov, editors, Ershov Memorial Conference,
volume 4378 of Lecture Notes in Computer Science, pages 349–362. Springer, 2006.

[SH05] Harald Störrle and Jan Hendrik Hausmann. Towards a Formal Semantics of UML 2.0 Activi-
ties. In Peter Liggesmeyer, Klaus Pohl, and Michael Goedicke, editors, Software Engineering,
volume 64 of LNI, pages 117–128. GI, 2005.

[SKU06] Ken Satoh, Ken Kaneiwa, and Takeaki Uno. Contradiction Finding and Minimal Recovery
for UML Class Diagrams. In ASE, pages 277–280. IEEE Computer Society, 2006.

[SRS99] Thomas Stauner, Bernhard Rumpe, and Peter Scholz. Hybrid System Model. Technical
Report TUM-I9903, Technische Univerität München, 1999.

[TA06] Ali Taleghani and Joanne M. Atlee. Semantic Variations Among UML StateMachines. In
MoDELS, pages 245–259, 2006.

[vdB02] Michael von der Beeck. A structured operational semantics for uml-statecharts. Software and
System Modeling, 1(2):130–141, 2002.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. Foundations of Com-
puter Science Series. MIT Press, Cambridge, Mass., 1993.

[ZLQ06] Xiangpeng Zhao, Quan Long, and Zongyan Qiu. Model Checking Dynamic UML Consis-
tency. In Zhiming Liu and Jifeng He, editors, ICFEM, volume 4260 of Lecture Notes in
Computer Science, pages 440–459. Springer, 2006.

82

A Basic mathematics used

In this report we have used various mathematical theories. In the following some sub-theories used are
shortly described.

A.1 Functions, Logic, Sets

Mathematical theory is quite compact, however some shorthand notations make mathematical formulas still
more compact. In the definitions A.1.1, A.1.2 and A.1.3 we have the most basic theories at hand.

Definition A.1.1 (Functions)

Functions
f : X → Y total functions
f : X ⇀ Y partial functions
f (a), f .a application in normal and selector-style
dom(f) ⊆ X domain of f (useful if f is partial)
[a = b] singleton f mapping a to f (a) = b
[a = b, c = d, . . .]
(λ x.f (x)); lambda abstraction
(λ x ∈ S.f (x))
f ⊕ g overriding union of functions:

(f ⊕ g)(a) = g(a) if a ∈ dom(g), else = f (a)
f |S restricts f : dom(f |S) = dom(f) ∩ S

Please note that g has precedence in f ⊕ g.

Definition A.1.2 (Logic)

Logic
P ∧ Q,P ∨ Q,¬ P, logic operators
P⇒ Q,P⇔ Q
B = {tt, ff} truth values
∃ x : P(x); ∃=1,∃≥1,∃≤1 variants of ∃ operators
P(a, ∗, ∗) wildcard ∗ is shorthand for ∃ x, y : P(a, x, y)
∀ x : P(x)

Wildcard ∗ is a convenient form to specify the existence of a value that isn’t otherwise of interest. It can,
e.g., be used in set comprehensions. The existence operator applies at the innermost possibility and uses
fresh variables: ∀ a : P(a, ∗) is equivalent to ∀ a : ∃ x : P(a, x)

83

Definition A.1.3 (Sets)

Sets
∅, {1, 2, 3} sets
A ∪ B,A ∩ B,A \ B set operators
x ∈ A,P(A),Pf (A)
{x | P(x)}, {f (x) | P(x)} set comprehension
{(x, ∗) | P(x)} wildcard means {(x, y) | P(x),∃ y}

A.2 Collections (or Containers)

We will in the forthcoming also use a variety of collections, such as lists, tuples and records which provide
some intuitive, but also some sophisticated functionality to handle. Please note that we intend these theories
to be basic theories and do not (necessarily) intend these data structures to become part of a typing system.

Definition A.2.1 provides a number of functions that apply to collections in general. We use C(X) to
denote a collection such as sets, lists etc. over set X.

Definition A.2.1 (Collections)

Collections
. ∈ . : X × C(X)→ B element in?
#. : C(X)→ N ∪ {∞} size
map : (X → Y)× C(X)→ C(Y) pointwise application
filter : P(X)× C(X)→ C(X) set-based filter
filter : (X → B)× C(X)→ C(X) predicate-based filter
set : C(X)→ P(X) as set

Notation:
P c©c is shorthand for filter(P, c)
f ∗(c) is shorthand for map(f , c)

Definitions A.2.2, A.2.3 and A.2.4 describe lists and stacks useful, e.g., for parameter lists and the imple-
mentation stack when describing behavior. While structurally equivalent, they serve different intentions and
therefore have different access and modifier operations.

Definition A.2.2 (List)

List
List[],List[1, 2, 3] lists
List(S) Lists over set S
l1 + +l2 concatenation
nub(l) remove doubles from list
List[f (x) | x ∈ ls,P(x)] list comprehension for list ls

84

Definition A.2.3 (Stack)

Stack
Stack[], Stack[1, 2, 3] stacks
Stack(S) stacks over set S
push(st, el) push an element onto the stack
pop(st) remove top element from the stack
top(st) top element of the stack
update(st, el) replace top element of the stack
Stack[f (x) | x ∈ ls,P(x)] stack comprehension for stack ls

Definition A.2.4 (Buffer)

Buffer
Buffer[],Buffer[1, 2, 3] buffers (like lists)
Buffer(S) all buffers over set S
b1 + +b2 concatenation
fst(b) first element
rst(b) rest of the nonempty buffer b
addfirst(b, el), addlast(b, el) add
Buffer[f (x) | x ∈ b,P(x)] buffer comprehension

A.3 Records

Record types are a classical concept to represent the state space of classes and their objects as well as local
variables and parameters. In particular, in name-tagged records, these functions do have appropriate names,
resembling attribute names. In addition to constructing new values from given ones, record values (i.e.,
values in the carrier set of a record type name) also provide selection functions for each part of a record
value. In name-tagged records, these tag names provide proper names for the selection functions. We start
with Definition A.3.1 describing the nature of a record as a function.

For access of record variables we define auxiliary functions in A.3.2.
The variables ai are called the attributes of the record. Notice that Rec is defined on functions and thus,

the definition of Rec does not rely on the ordering of its attributes. Therefore Rec{a : T, b : S} and
Rec{b : S, a : T} describe the same records.

A.4 Tuples: Cartesian Products

Cartesian products (also called “cross products” or “tuples”) over values and the carrier sets of the record
type names introduced above do share some common structure. However, they also differ significantly,
so that we do not identify them. Records have indexed value entries, whereas Cartesian products have an
ordered list of values. Although in programming Cartesian products can be mimicked by records, in our sys-
tem model we need a Cartesian product for example to model parameters of messages and methods,because
these parameters are submitted by position and not by name. Therefore, we unfortunately need both, records
and cartesian products.

Due to their similarity, records and tuples can be translated into each other. There are two mappings
between tuples and corresponding records given in Definition A.4.2.

85

Definition A.3.1 (Basic structure of records)

Record1
SRec : D× (D→ P(V))→ P(D→ V)

Notation:
Rec{a1 : V1, . . . , an : Vn} is shorthand for

SRec({a1, . . . , an}, S) with S(ai) = Vi

[a1 = v1, . . . , an = vn] is a shorthand for the value (function)
r : {a1, . . . , an} → V with r(ai) = vi ∈ Vi

SRec(D, S) is the set of records with domain D (its attributes) and its attribute values constrained by sort
function S. The notations used for record values [. . .] and for record types Rec{. . .} help accommodate
an easier reading.

Derived:

ri ∈ SRec(Di, Si)⇒ r1 ⊕ r2 ∈ SRec(D1 ∪ D2, S1 ⊕ S2)

Definition A.3.2 (Attribute selection for records)

Record2
RECORD(D, S) =

⋃
E⊆D SRec(E, S)

attr : RECORD(D, S)→ D

Notation:
r.ak is the record denotation for r(ak)∀ ak ∈ D

attr(Rec{a1 : S1, . . . , an : Sn}) = {a1, . . . , an}
attr([a1 = x1, . . . , an = xn]) = {a1, . . . , an}

attr is the list of attribute names.
RECORD(D, S) contains all records.

The mappings between tuples and records are inverse (Lemma A.4.3). Note that both, tuples and records,
need the list of attribute names: rec needs the ordered list [a1, .., an] to map the values to the appropriate
attributes. tuple needs the list to restore the order given in the tuple (which is not present in the record).

86

Definition A.4.1 (Cartesian products (tuples))

CartesianProduct
Tuple : List(V)→ ×i≤nV
STuple : List(P(V))→ P(×i≤nV)
#. : Tuple(V)→ N

Notation:
(a1, . . . , an) for Tuple[a1, . . . , an]

STuple[S1, . . . , Sn] = ×(1≤k≤n)Sk

STuple[] = {()}
#(a1, . . . , an) = n

TUPLE(V) = {Tuple(lt) | lt ⊆ V,#lt ∈ N}
(a1, . . . , an) ∈ STuple[S1, . . . , Sn]⇒ ai ∈ Si

πk : Tuple(V)→ V
πk(a1, . . . , an) = ak

Tuple[] with the empty list is special unit type whose carrier has one value ().
STuple describes the set of all tuples of given sorts Vi. TUPLE(V) contains all tuples over set V and πk is
used as selector.

Definition A.4.2 (Cartesian products and records)

CartRec
recd=[a1,...,an]∈List(D) : TUPLE[V1, . . . ,Vn]→ RECORD(d,⊕i[ai = Vi])
tupled=[a1,...,an]∈List(D) : RECORD(d,⊕i[ai = Vi])→ TUPLE[V1, . . . ,Vn]

rec[a1,...,an](v1, . . . , vn) = [a1 = v1, . . . , an = vn]
tuple[a1,...,an]([a1 = v1, . . . , an = vn]) = (v1, . . . , vn)

rec produces a record from a tuple. The list of attributes determines where the values are assigned to.
tuple produces a Cartesian product from a record. The list of variables determines the order of the Carte-
sian product, as records are unordered.

Lemma A.4.3 (Mappings between tuples and records are inverse)

use CartRec

rec[a1,...,an](tuple[a1,...,an](r)) = r
tuple[a1,...,an](rec[a1,...,an](t)) = t

87

B Central Model of Interaction: Streams,
Components, STS

This chapter describes a closed, well-defined theory on stream processing components and state transition
systems that define two different views on distributed, interacting systems. Both, streams processing com-
ponents and the state transition systems are well related through appropriate mapping functions and their
refinement and composition techniques are compatible.

B.1 Types of Models for Interactive Systems

There are a number of different theories and fundamental models of interactive systems. Most significant
for them are their paradigms of interaction and composition. We identify the following basic concepts of
communication in distributed systems that interact by message exchange:

Asynchronous communication (message asynchrony): a message is sent as soon as the sender is
ready, independent of the fact whether a receiver is ready to receive it or not. Sent messages are
buffered (by the communication mechanism) and can be accepted by the receiver at any later time. If
a receiver wants to receive a message but no message was sent it has to wait. However, senders never
have to wait (see [Kah74, EHS97]) until receivers are ready since messages may be buffered.

Synchronous communication (message synchrony, rendezvous, handshake communication): a mes-
sage can be sent only if both the sender and the receiver are simultaneously ready to communicate; if
only one of them (receiver or sender) is ready for communication, it has to wait until a communication
partner gets ready (see [Hoa83, Mil82]).

Time synchronous communication (perfect synchrony): several interaction steps (signals or atomic
events) are conceptually gathered into one time slot; in this way, systems are modeled with the help
of sequences of sets of events (see [BG92] as a well-known example).

Traditional method call: It combines some characteristics of all three previously described approaches.
For sequential method calls, progress of time is not such a big issue, which allows programmers to
think of synchronous message passing and even of perfect synchrony. The receiver, however, cannot
prevent the sender (caller) to start the method call like with asynchronous message passing. The
receiver must accept the call and react somehow.

Any of the first three models can be used to encode any other, and method calls can be simulated in all of
them. Furthermore, a general purpose modeling language, like the UML, attempts to provide mechanisms
for all of these communication paradigms. Moreover, these communication paradigms shall be used within
one system and work together. It is therefore necessary to integrate all communication paradigms, e.g.,
by encoding one within the other. It is a matter of taste to choose one of these paradigms as underlying
mechanism. In the following, we work with asynchronous message passing since this model has, according
to our experience, the finest properties for our purpose. We follow the system model given in [BS01]
basing our approach on a concept of a component that communicates messages asynchronously with its
environment via named channels within a synchronous time frame.

88

B.2 Streams

For a convenient specification of object behavior, it is of interest to look not only at the currently incoming
message, but at the overall sequence of messages that has arrived on a channel so far. We thus use channel
histories to model traces of behavior.

B.2.1 Basic Streams

A stream is a finite or infinite sequence of elements of a given set to describe object behavior. In interactive
systems streams are built over sets of messages or actions. A stream describes an observation that an
observer can make when sitting on a directed communication channel. The behavior of a component can
then be modeled through a relation between its observed input and output streams. Streams are therefore
used to represent interaction patterns by communication histories for channels or histories of activities.

Technically, a container structure and thus the functions from Definition A.2.1 apply here as well. Let
M be a set (of messages). By M∗ we denote the set of finite sequences of elements of M, and by M∞ the
set of infinite sequences of elements of M. The set Mω of streams over M are finite or infinite sequences
of elements of the set M. Thus Mω = M∗ ∪ M∞. If desired, streams over M can be understood as partial
functions of form x : [1..n] → M with “length” #x = n ∈ N ∪ {∞}, where infinite streams are exactly
the total functions (N → M). We write x.t instead of x(t) as shorthand for selection of the element in x
at position t. A finite stream x of elements x.1, . . . , x.n (in this ordering) is also written 〈x.1, . . . , x.n〉. A
special case is the empty stream, denoted by ε (sometimes 〈 〉 is used to denote the empty stream). The set of
streams has an adequate set of mathematical operations, forming a rich algebraic and topological structure
as given in Definition B.2.1.

Based on the Definition B.2.1 we can conclude a number of properties in Lemma B.2.2.
Further operators can be defined on streams allowing easier specification; see Definition B.2.3, additional

properties are presented in B.2.4.
(Mω,v) is a partial order, i.e., the relation v is reflexive, transitive and antisymmetric. This partial

order is well-founded, i.e., it contains no countable infinite descending chains and complete (it has a least
element, namely ε, and each of its chains has a least upper bound). This property is very useful, as it allows
the description of finite prefixes of streams and the use of inductive (or recursive) techniques for full stream
characterization. The theory can be found in [BS01].

B.2.2 Timed Streams

A stream represents the sequence of messages sent over a channel during the lifetime of a system. Of course,
in concrete systems this communication takes place in a time frame. Hence, it is often convenient to be able
to refer to this time. Moreover, as we will see, the theory of feedback gets much simpler. Therefore we work
with timed streams as given in Definition B.2.5.

Streams are used to represent histories of communications of data messages transmitted within a time
frame. Given a message set M, we define a (infinite) timed stream as the elements in the set (M∗)∞, or,
equivalently, as the functions of form s : N→ M∗.

As timed streams are just a special form of streams, we can use those operators again. s.t denotes the
sequence of messages observed in the stream s at time slot t. That is, a timed stream s ∈ (M∗)∞ expresses
which messages are transmitted at which time(s). To map between timed and untimed streams, we use (�s)
that extracts all messages. Note that (�s) is finite iff s carries only a finite number of nonempty sequences.

B.2.3 Channels and Histories

Timed streams are used to model the communication histories of sequential, unidirectional communication
media (e.g., between two objects) that we call channels. Since a system usually has a larger number of
communication streams, we work with channels to refer to individual communication streams. Accordingly,

89

Definition B.2.1 (Definition of streams)

Streams1
Mω = M∗ ∪M∞

ε, 〈1, 2, 3〉, 〈1, 2, 3, . . .〉 streams
x : s prefix an element
s.i selection for i ∈ N
: Mω → N ∪ {∞} length
a : Mω ×Mω → Mω stream concatenation
fst : Mω → M first element
rst : Mω → Mω rest of stream (if nonempty)
〈f (i) | 1 ≤ i ≤ n〉, stream comprehension
〈f (i) | i ∈ N〉, infinite stream comprehension
〈f (x) | P(x), x ∈ st〉, stream comprehension for stream st

m : s = 〈m〉a s
∀〈s.1, . . . , s.n〉, 〈r.1, . . . , r.m〉 ∈ M∗, z ∈ M∞ :
〈s.1, . . . , s.n〉a 〈r.1, . . . , r.m〉 = 〈s.1, . . . , s.n, r.1, . . . , r.m〉
i ≤ n⇒ (〈s.1, . . . , s.n〉a z).i = s.i
i > n⇒ (〈s.1, . . . , s.n〉a z).i = z.(i− n)
∀ s ∈ M∞, r ∈ Mω :

s a r = s
#ε = 0
#〈s.1, . . . , s.n〉 = n
#(s a r) = #s + #r
s 6= ε⇒ fst(s) a rst(s) = s

Mω is the set of all finite and infinite streams.

Lemma B.2.2 (Properties for streams 1)

use Streams1

#(x : s) = 1 + #s
fst(x : s) = x ∧ rst(x : s) = s
#s = 0⇒ s = ε

s 6= ε⇒ fst(s a r) = fst(s)
s 6= ε⇒ rst(s a r) = rst(s) a r
#s =∞⇒ s a r = s
s 6= ε⇒ #rst(s) = #s− 1
s = r ⇔ s = ε = r ∨ (fst(s) = fst(r) ∧ rst(s) = rst(r))
s = r ⇔ #s = #r ∧ ∀ 1 ≤ i ≤ #n : s.i = r.i

a channel is simply an identifier (channel name) which is associated with a stream observation in every
execution of the system.

As the messages that can be observed on a channel are constrained, each channel is given a “type” of

90

Definition B.2.3 (More operations on streams)

Streams2
extend Streams1

s v r prefix relation
s ↓ t prefix of length t ∈ N
P c©s, S c©s filter (predicate or set)
P#s, S#s number of messages in S / P
f ∗(s) map function element-wise

∀ s, r ∈ Mω :
s v r ⇔ ∃ z ∈ Mω : s a z = r

#(s ↓ t) = min(#s, t)
(s ↓ t) v s
f ∗(x : s) = f (x) : f ∗(s)
P(x)⇒ P c©(x : s) = x : (P c©s)
¬P(x)⇒ P c©(x : s) = P c©s
P#s = #(P c©s) ∧ S#s = #(S c©s)

s v r denotes the prefix relation between streams, x ↓ t selects the prefix of length t, P c©s, S c©s and f ∗(s)
denote the usual filters and mapping functions.

Lemma B.2.4 (Properties for streams 2)

use Streams2

#s =∞∧ s v r ⇒ s = r
#t <∞⇒ s v r ⇔ (t a s) v (t a r)
f ∗(s a r) = f ∗(s) a f ∗(r)
#r <∞⇒ P c©(r a s) = (P c©s) a (P c©r)
(X ∪ Y) ↓ t = (X ↓ t) ∪ (Y ↓ t)

messages that flow on the channel. The concept of a stream is then used to define the concept of a channel
history. A channel history is given by the messages communicated over a channel. Such a history describes
an observation on a channel, when recording the flow of messages over time. See Definition B.2.6 for the
basic structure and Definition B.2.7 for operations.

All operations and notational conventions introduced for streams generalize in a straightforward way
to histories applying them element-wise. As we deal with piecewise composed behavior, we extend our
notion of channels histories to partial histories of the form s : D → (M∗)∗ and to time slices of the form
u : D→ M∗. The latter is explicitly given by Definitions B.2.8 (where T is used in place ofH):

B.2.4 Interfaces, I/O-Behaviors and Time

In this section we introduce a theory of component behaviors and interface abstraction. Then we discuss
issues of time and causality.

Definition B.2.9 contains a signature view on components in terms of syntactic interfaces and continue
with a behavioral view.

91

Definition B.2.5 (Timed streams)

TStreams1
extend Streams2

(M∗)∞ set of timed streams
P c©ts, S c©ts filter (predicate or set)
P#ts, S#ts number of messages in S / P
f ∗t(s) map function on messages
�s ∈ Mω untimed message stream of s

∀ t ∈ N, s ∈ (M∗)∞ :
(P c©ts).t = (P c©s.t)
(S c©ts).t = (S c©s.t)
P#ts = #(P c©ts)
S#ts = #(S c©ts)
f ∗t(s).t = f ∗(s.t)

(�s) = a
t∈Ns.t

(M∗)∞ is the set of all infinite, timed streams. Filters P c©s, P#s and mapping f ∗(s) are adapted to work
on individual messages rather than time slices. If its clear from the context, suffixt is omitted. �s is the
list of untimed messages of s, where all timing information was removed.

Definition B.2.6 (Channels)

Channel1
extend TStreams1

SHist : D× (D→ P(M))→ P(D→ (M∗)∞)

Notation:
HS(C) is shorthand for SHist(C, S)

with S(ci) = (M∗i)∞

H{c1 : M1, . . . , cn : Mn} is shorthand for
SHist({c1, . . . , cn}, S) with S(ci) = (M∗i)∞

[c1 = s1, . . . , cn = sn] is a shorthand for the channel history
r : {c1, . . . , cn} → (M∗)∞ with r(ci) = si ∈ (M∗i)∞

SHist(D, S) describes the set of channel histories for channels D with messages of sort S(c) for each chan-
nel c ∈ D. The notations used for channel assignments [. . .] and for channel types H help accommodate
an easier reading. The types of channels are omitted, if clear from the context.

The syntactic interface (I −B O) does not say much about the behavior of a component. Basically it only
fixes the basic steps of information exchange possible for the component and its environment.

For input/output information processing devices there is a crucial dependency of output on input. Certain
output messages depend on certain input messages. A crucial notion for interactive systems is therefore
causality. Causality indicates dependencies between the messages exchanged within a system and can be
expressed through the order of occurrence in the timing. It describes, which output message is a reaction on
which input. I/O-behaviors generate their output and consume their input in a time frame. This time frame
is useful to characterize causality between input and output. Output that depends causally on certain input
cannot be generated before this input has been received.

92

Definition B.2.7 (Channel operations)

Channel2
extend Channel1

HIST(D, S) =
⋃

E⊆D SHist(E, S) all histories
channels(s) set of channels
s.c ∈ (M∗)∞ stream on channel c ∈ E
(s⊕ r) sum of the histories s and r
s |C restriction on C

∀ s ∈ HS(D1), r ∈ HS(D2), c ∈ D1 ∪ D2 :
channels(s) = dom(s) = D1

c ∈ channels(s)⇒ s.c = s(c)
(s⊕ r) ∈ HS(D1 ∪ D2)
channels(s⊕ r) = channels(s) ∪ channels(r) = D1 ∪ D2

c ∈ D1 ∧ c 6∈ D2 ⇒ (s⊕ r).c = s.c
c ∈ D2 ⇒ (s⊕ r).c = r.c
channels(s |C) = channels(s) ∩ C
(s⊕ r) |channels(r)= r
D1 ∩ D2 = ∅⇒ (s⊕ r) |channels(s)= s

HIST(D, S) is the set of all channel histories for subsets of D. s ⊕ r and s |C are defined as known from
functions. Please note that r has precedence in s⊕ r.

Definition B.2.8 (Definition of channels time slices)

Channel3
extend Channel2

s.t ∈ (E → M∗) time slice on time t ∈ N
T S(D) = {s.t | s ∈ HS(D), t ∈ N} set of slices

∀ s, r ∈ HIST(E, S), t ∈ N, c ∈ E,C ⊆ E :
channels(s.t) = channels(s)
(s.c).t = (s.t).c
(s⊕ r).t = (s.t)⊕ (r.t)
(s |C).t = (s.t) |C
T S(D) is in analogy to HS(E) the set of channel time slices. All operations on histories carry forward to
time slices, as dealing with channels and time slicing are orthogonal: (s.c).t = (s.t).c.

Both predicates properlytimed and timeguarded describe these constraints between input and output. A
function F is properly timed if the output up to the t-th time interval does not depend on input that is received
after time t. This ensures that there is a proper time flow for the component modeled by F. F cannot predict
the future input and react on it.

If F were not properly timed, there would exist a time t and input histories x and x′ such that x ↓ t = x′ ↓ t
and (F.x) ↓ t 6= (F.x′) ↓ t. A difference between x and x′ occurs only after time t, but at time t the reactions
of F in terms of output messages are already different. Thus F then could predict the future.

Nevertheless, the defined notion of causality permits instantaneous reaction [BG92]: the output at time
t may depend on the input at time t. This may lead to problems with causality between input and output,

93

Definition B.2.9 (Component interfaces and behavior)

Behavior
extend Channel3

I −BS O syntactic interface of a component
BS(I,O) behaviors of a component

timeguarded, properlytimed : HS(I)→ P(HS(O))→ Bool

BS(I,O) = {F : HS(I)→ P(HS(O)) | timeguarded(F)}
properlytimed(F) =
∀ t ∈ N, s, r ∈ HS(I) : s ↓ t = r ↓ t⇒ (F.s) ↓ t = (F.r) ↓ t

timeguarded(F) =
∀ t ∈ N, s, r ∈ HS(I) : s ↓ t = r ↓ t⇒ (F.s) ↓ (t + 1) = (F.r) ↓ (t + 1)

I −BS O describes the syntactic interface of a component, namely the channels I it reads and the channels
O it writes on. BS(I,O) is the set of time guarded behaviors for that component. F.i describes the output
histories that may be returned for any input history i ∈ HS(I). The set F.i can be empty. Furthermore I
and O can overlap allowing feedback loops.
S is again typing information for the channels (and will be omitted for brevity in the following).

if we consider in addition delay free feedback loops known as causal loops. To avoid these problems we
strengthen the concept of proper time flow to the notion of strong causality, or so called “time guardedness”.
As Lemma B.2.10 states, timeguarded is stronger than properlytimed.

Lemma B.2.10 (Properties of behavior functions)

use Behavior

timeguarded(F)⇒ properlytimed(F)

Strong causality simply enforces components to introduce a delay of one time unit before it can react. If
the granularity of time units is fine enough, we can always detect such a delay. If time units are defined
at a proper granularity, we can always observe some delay for the output to happen. So time guardedness
correctly reflects what we see in reality.

In general, an I/O-behavior F : H(I)→ P(H(O)) allows many implementations, as it allows many reac-
tions to one input. Each one of the possible implementations can be described as a deterministic descendant
of this behavior. Such an implementation is given through a deterministic function f : H(I) → H(O) as
given in Definition B.2.11.

Even though the definition of F is complete (∀ s : F.s 6= ∅), there need not necessarily be a deterministic
descendant. However, such deterministic descendants describe proper implementations. realizable ensures
the existence of such implementations. Lemma B.2.12 describes properties of behaviors.

B.2.5 Composition of Interface Behavior

In this section, we introduce an operator for the composition of components. We prefer to introduce only
one very general, powerful composition operator in Definition B.2.13. This operator generalizes sequential
and parallel composition as well as introduction of feedback loops.

94

Definition B.2.11 (Deterministic component implementation)

Implementation
extend Behavior

⊆: B(I,O)→ B(I,O)
complete, deterministic, realizable : B(I,O)→ Bool
det : B(I,O)→ (H(I)→ H(O))

G ⊆ F ⇔ ∀ s ∈ H(I) : F.s ⊆ G.s
complete(F) =
∀ s ∈ H(I) : F.s 6= ∅

deterministic(F) =
∀ s ∈ H(I) : #(F.s) = 1

deterministic(F)⇒ ∃1 f : det(F) = f where
∀ s ∈ H(I) : F.s = {f .s}

realizable(F) =
∃G ∈ B(I,O) : G ⊆ F ∧ deterministic(G)

G ⊆ F describes refinement of F into a more deterministic version G. deterministic determines whether
there is exactly one function. det translates to that function and realizable determines whether there are
such deterministic descendants.

Lemma B.2.12 (Properties of realizability)

use Implementation

deterministic(F) ∧ complete(F)
deterministic(F) ∧ realizable(F)
deterministic(F) ∧ complete(G) ∧ G ⊆ F ⇒ F = G
deterministic(F) ∧ realizable(G) ∧ G ⊆ F ⇒ F = G
deterministic(G) ∧ G ⊆ F ⇒ realizable(F)
deterministic(G) ∧ G ⊆ F ⇒ complete(F)
realizable(F)⇒ complete(F)

F1 F2

F1 © F2
c1

c3 c4 c5 c6

c2

Figure B.1: Parallel composition with feedback

Here, y denotes the history for all the internal, input and output channels in the composition. The com-
position formula essentially says that all the streams on output channels of the components F1 and F2 are
feasible output streams of these components.

95

Definition B.2.13 (Component composition)

Focus
extend Implementation

⊗ : B(I1,O1)× B(I2,O2)→ B(I,O)

∀F1 ∈ B(I1,O1),F2 ∈ B(I2,O2),
I = (I1 ∪ I2) \ (O1 ∪ O2),
O = (O1 ∪ O2) \ (I1 ∪ I2) :

O1 ∩ O2 = ∅⇒
F1 ⊗ F2 ∈ B(I,O)∧
∀ x ∈ H(I) : (F1 ⊗ F2).x =
{(y |O) | y ∈ H(I ∪ O1 ∪ O2) ∧ y |I= x |I ∧

y |O1∈ F1(y |I1) ∧ y |O2∈ F2(y |I2)}

F1 ⊗ F2 is the central composition of behaviors. In the composition y contains all channel histories
involved.

Figure B.1 illustrates parallel composition with feedback where the feedback channels are not externally
visible in the composed system.

Please note that the only restriction for composition is that output channels are disjoint, since each channel
is output of one component only.

Please note that there are slightly generalized versions of composition operators possible. E.g., the actual
feedback resp. the channels that are not hidden can be added as a parameter, such that some internally used
channels still are available outside and I ∩ O = ∅ not necessarily holds. Second, the typing information S
is assumed to be globally the same, but could be defined as joinable. Third, it would be possible to define
composition in such a way that not every component needs to be time guarded, but in each feedback loop, at
least one time guarded component needs to be involved (a technique known from electrical circuit design).

It is straightforward to prove that the composition is strongly causal, if one component is strongly causal.
If both components are deterministic, then so is the composition. If both components are realizable, then so
is the composition. See Lemma B.2.14.

Lemma B.2.14 (Properties of behavior function composition)

use Focus

∀Fi,Gi ∈ B(Ik,Ok) :
complete(F1,F2)⇒ complete(F1 ⊗ F2)
deterministic(F1,F2)⇒ deterministic(F1 ⊗ F2)
realizable(F1,F2)⇒ realizable(F1 ⊗ F2)
G1 ⊆ F1 ⇒ (G1 ⊗ F2) ⊆ (F1 ⊗ F2)
G2 ⊆ F2 ⇒ (F1 ⊗ G2) ⊆ (F1 ⊗ F2)
F1 ⊗ F2 = F2 ⊗ F1

O1 ∩ O3 = ∅⇒
(F1 ⊗ F2)⊗ F3 = F1 ⊗ (F2 ⊗ F3)

But as the most important result, the composition is designed in such a way, that it is compatible with
independent development of its parts. This means, given a composition, we can chose a deterministic

96

implementation for each part individually, compose these and get a deterministic implementation of the
composition. Again see Lemma B.2.14.

And finally, the composition is associative and commutative, which allows generalizing the composition
operator to any (signature compatible) set of components - including infinite sets.

B.3 State Transition Systems

As objects react on incoming messages, state transition systems are an appropriate way of describing object
behavior. Several forms of state transition systems and their compositions are used in the report. Therefore,
we introduce the basics of STS as a general technique here.

B.3.1 STS-Definition

The theory used here is based on the theory of automata, but was partly enhanced in [Rum96] to describe a
form of automata, called I/O∗-automata, where transitions are triggered by one incoming message and the
effect of this message, namely a sequence of possible outputs is the output of the same transition. In contrast
to I/O-automata [LT89], this form allows to abstract away from many internal states of the automaton, which
are necessary, if each output is triggered by an individual transition. The application of I/O∗-automata to
our description of objects is given in Definition B.3.1.

Definition B.3.1 (I/O∗-STS)

STS
STS(S, I,O) =
{(S, I,O, δ, s0) | s0 ⊆ S ∧ s0 6= ∅
∧ δ ∈ S× I → P(S× O∗)
∧ ∀ s ∈ S, i ∈ I : δ(s, i) 6= ∅}

Notation:

δ : s
i/o−→ t is shorthand for (o, t) ∈ δ(s, i)

STS(S, I,O) is the set of all, possibly underspecified STS with given state, input and output sets. An STS
has a complete transition relation as δ(s, i) 6= ∅ for all s, i.

As can be seen from the definition the transition function is nondeterministic. This allows to model
underspecification and thus multiple behaviors in the STS. As discussed in [Rum96], this underspecification
may be resolved during design time by the developer or during runtime by the system itself taking the choice
according to some random circumstances, sensor input, etc.

The semantics of such an STS is defined in [Rum96] using stream processing functions in the form of
[BDD+93]. These stream processing functions allow composition, behavioral refinement etc.

However, STS themselves are not fully compositional regarding compositionality of the state space. But
there are quite a number of techniques to combine smaller STS to a larger STS.

B.3.2 Deterministic STS

STS allow us to constrain behavior, but keep underspecification at desired places. If a behavior can be fully
defined, underspecification is unnecessary and we can use a deterministic STS as given in Definition B.3.2.

97

Definition B.3.2 (Deterministic STS)

DSTS
DSTS(S, I,O) =
{(S, I,O, δ, s0) ∈ STS |
#s0 = 1 ∧ ∀ s ∈ S, i ∈ I : #δ(s, i) = 1}

B.4 Timed State Transition Systems

Timed state transition systems do not directly use events to make their steps, but time progress. A timed
state machine equidistantly performs its steps as time progresses and consumes all messages arriving at
that time. As a big advantage, we cannot only integrate time into the specification technique, but also have
composition operators at hand that are compatible with the composition on streams.

B.4.1 Definition of Timed State Transition Systems

A timed state transition system (TSTS) is a STS where each transition resembles a time step. Such a time
step can handle several input messages and produce several outputs. TSTS are therefore defined in B.4.1.
Here I and O play the roles of channels, which are typed by the channel typing function c : (I∪O)→ P(M).

Definition B.4.1 (Timed STS)

TSTS1
TSTSc(S, I,O) = {(S, T c(I), T c(O), δ, s0) ∈ STS(S, T c(I), T c(O)) |
∀ δ : s

i/o−→ t⇒ #o = 1∧
∀ δ : s

i/o−→ t, i′ : ∃ t′ : δ : s
i′/o−→ t′

}

TSTSc(S, I,O) is the set of all, possibly underspecified STS that resemble timed object behavior. A TSTS
has a complete transition relation.

The restriction #o = 1 in TSTS is not a real one, as by definition o ∈ (T (O))∗ which can be regarded as
equivalent to o ∈ T (O). Instead, we could also use a flatting operator on o. The simplified representation
of the timed transition function δ, which will now be used is thus

δ : (S× T c(I))→ P(S× T c(O))

where T c(I) denotes the set of channel time slices for the channels in I like described in Definition B.2.8.
The second restriction models the fact that the state transition function describes the behavior of a Moore

machine [Kat93]. The output o therefore only depends on the start state s, but not on the input x as for all
other inputs x′ the same output y is happening, too.

One way to interpret this rule is that the granularity of time is fine enough to trace state changes in such
a detailed way that the reaction to an input is always delayed by at least one time unit (one state transition
step). As an immediate consequence, feedback cycles include a time step and thus preserve causality.
Another consequence is that the output of a transition is independent of the input of this transition and,
therefore, intermediate storage for either the input before being processed or the resulting output in the state
space is inevitable.

98

B.4.2 Composition of TSTS

Timed state transition systems are compositional. The following Definition B.4.2 describes an appropriate
composition operator.

Definition B.4.2 (Component composition)

TSTSComposition
extend TSTS1

⊗ : TSTS(S1, I1,O1)× TSTS(S2, I2,O2)→ TSTS(S, I,O)

∀Ak = (Sk, T (Ik), T (Ok), δk, s0k) ∈ TSTS(Sk, Ik,Ok),
I = (I1 ∪ I2) \ (O1 ∪ O2),
O = (O1 ∪ O2) \ (I1 ∪ I2),
S = S1 × S2 ∧ s0 = s01 × s02 :

O1 ∩ O2 = ∅⇒
A1 ⊗ A2 = (S, T (I), T (O), δ, s0) ∈ TSTS(S, I,O)∧
∀ x ∈ T (I), (s1, s2) ∈ S : δ((s1, s2), x) =
{((t1, t2), y |O) | y ∈ T (I ∪ O1 ∪ O2) ∧ y |I= x |I ∧

(t1, y |O1) ∈ δ1(s1, y |I1) ∧ (t2, y |O2) ∈ δ2(s2, y |I2)}

A1 ⊗ A2 composes TSTS. In the composition y contains the time slices of all channels involved.

Given that the output only depends on the state, the composition formula is always uniquely fulfilled and
thus yields a precisely defined TSTS. The formula expresses that the input to the composed machine is split
into input to the first machine and input to the second machine. With this input, and possibly additional
input from feedback, both machines carry out their transition and produce output. The new states of the
small machines define the new state of the composed machine; the output of the composed machine is built
using the output of the small machines.

When comparing the composition for behaviors as given in B.2.13 and this composition, is becomes
apparent that both operations are structurally very similar. The Figure B.1 for behaviors is the same for state
machines is one replaces Fk by the state machines Ak. This becomes even more apparent, when comparing
the properties of TSTS-composition with behavior composition. Lemma B.4.3 exhibits just commutativity
and associativity. Thus composition can be generalized to any finite and (by induction) also infinite set of
TSTS.

A proof of well-foundedness of this composition can, e.g., be found in [GR95].

Lemma B.4.3 (Properties of TSTS composition)

use TSTSComposition

∀Ai ∈ TSTS(Sk, Ik,Ok) :
A1 ⊗ A2 = A2 ⊗ A1

O1 ∩ O3 = ∅⇒
(A1 ⊗ A2)⊗ A3 = A1 ⊗ (A2 ⊗ A3)

Preservation of determinism etc. are also given, but not further investigated here, as they come for free
when we connect TSTS with interface behaviors.

99

B.4.3 Interface Behavior and Interface Abstraction

State machines can provide detailed models for systems, because the structure of the state is shown explicitly.
However, if a state is encapsulated, a representation of the system behavior without considering the structure
of states seems most appropriate. This is essentially what we call the interface of a system. The interface
abstraction of a state machine is made explicit using the translator in Definition B.4.4.

Definition B.4.4 (Interface abstraction for a TSTS)

TSTSAbstraction
extend TSTSComposition

S[.] : TSTS(S, I,O)→ B(I,O)
B : TSTS(S, I,O)→ S→ B(I,O)

∀A = (S, T (I), T (O), δ, s0) ∈ TSTS(S, I,O) :
∀ s ∈ S, i ∈ T (I), x ∈ H(I) :

BA(s)(i a x) = {o a y | ∃ o, t : δ : s
i/o−→ t ∧ y ∈ BA(t)(x)}

S[A] ∈ B(I,O)
∀ x ∈ H(I) : S[A](x) =

⋃
s∈s0 BA(s)(x)

BA is a recursively defined functions which equals the behavior of the TSTS. Instantiated with a start state,
it results in the I/O-behavior S[A] that describes the behavior of TSTS A.

Definition B.4.4 basically consists of a recursively defined I/O-behavior function BA that exactly equals
the behavior induced by the transitions of δ. BA therefore provides the interface abstraction of the state
transition function δ. This interface abstraction produces a behavioral description that excludes internal
states and transition steps, such that the overall behavior becomes easier to grasp.

Please note that the recursive definition of BA has several solutions. We use the inclusion maximal solu-
tion, which is uniquely defined, because the right hand side of the equation is inclusion monotonic in BA.
Thus BA is recursively defined by an inclusion monotonic function which even is guarded. Hence there
exists a unique inclusion maximal solution. BA(s) defines an I/O-behavior for any initial state s ∈ s0, which
represents the behavior of the component described by the state machine δ if initialized by the state s. The
element-wise union of the resulting I/O-behaviors for all s ∈ s0 yields again an I/O-behavior.

The fact that the TSTS is input enabled and provides the behavior of a Moore machine (output reactions
have at least one time unit delay) guarantees that S(A) is a time guarded I/O-behavior. Proofs for this can
be found in [GR95].

Lemma B.4.5 states that composing TSTS and deriving their abstraction to I/O-behaviors gives exactly
the same result as deriving the abstraction to I/O-behaviors and composing them.

Lemma B.4.5 (TSTS composition is fully abstract)

use TSTSAbstraction

∀Ai ∈ TSTS(Sk, Ik,Ok) :
S(A1 ⊗ A2) = S(A1)⊗ S(A2)

The proof is done by induction over the time intervals and can also be found for example in [GR95] on a
variation of this approach.

100

Now we have two models for systems available: state machines and interface behaviors that are fully
compatible. This is an important property of the construction of this system model, as it demonstrates that
mapping UML constructs to either interface behaviors or state machines is both possible.

101

C Glossary: Summary of all Signatures

This chapter contains a repetition of all signatures defined in previous chapters and thus serves as a glossary.

Definition C.1.1 (Type infrastructure summary)

Type
extend Type1,Variable,BoolInt,Void

UTYPE
UVAL
CAR : UTYPE → P(UVAL)

Bool, Int ∈ UTYPE
true, false ∈ UVAL

Void ∈ UTYPE
void ∈ UVAL

UVAR
vtype : UVAR→ UTYPE
vsort : UVAR→ P(UVAL)
VarAssign = RECORD(UVAR, vsort)

This is a collection of all basic elements for types, variables and values.

102

Definition C.1.2 (Object infrastructure summary)

Object
extend Type;
extend Class,Attribute,Nil, Subclassing

UCLASS, UOID, INSTANCE
attr : UCLASS→ Pf (UVAR)
oids : UCLASS→ P(UOID)
objects : UCLASS→ P(INSTANCE)
objects : UOID→ P(INSTANCE)
classOf : INSTANCE → UCLASS
classOf : UOID→ UCLASS

this : INSTANCE → UOID
getAttr : INSTANCE × UVAR ⇀ UVAL
attr : INSTANCE → Pf (UVAR)
attr : UOID→ Pf (UVAR)

Nil ∈ UOID

sub ⊆ UCLASS× UCLASS
.& : UCLASS→ UTYPE

This theory contains all elements for objects, identifiers and classes.

Definition C.1.3 (The DataStore with all its elements)

Data
extend Association;

DataStore ⊆ (UOID→ INSTANCE)
oids : DataStore→ P(UOID)

val : DataStore× UOID× UVAR ⇀ UVAL
setval : DataStore× UOID× UVAR× UVAL ⇀ DataStore
addobj : DataStore× INSTANCE → DataStore

UASSOC
classes : UASSOC→ List(UCLASS)
extraVals : UASSOC→ P(UVAL)
relOf : UASSOC × DataStore→ P(UVAL× UVAL)

This theory defines the data state of the system.

103

Definition C.1.4 (Object infrastructure summary)

Control
extend ControlStore,TypeSafeOps

UOPN,UOMNAME
nameOf : UOPN → UOMNAME
classOf : UOPN → UCLASS
parTypes : UOPN → List(UTYPE)
params : UOPN → TUPLE(UVAL)
resType : UOPN → UTYPE

UMETH,UPC
nameOf : UMETH → UOMNAME
definedIn : UMETH → UCLASS
parNames, localNames : UMETH → List(UVAR)
parOf , localsOf : UMETH → VarAssign
resType : UMETH → UTYPE
pcOf : UMETH → Pf (UPC)

impl : UOPN ⇀ UMETH

FRAME = UOID× UOMNAME × VarAssign× UPC × UOID
framesOf : UMETH → P(FRAME)

UTHREAD
CentralControlStore ⊆ (UTHREAD→ Stack(FRAME))

ControlStore ⊆ (UOID→ UTHREAD→ Stack(FRAME))
. ∼ . ⊆ CentralControlStore× ControlStore

This theory describes the stacks and threads within the control store.

104

Definition C.1.5 (Event and message summary)

Events
extend Control;
extend EventStore,Message, Signal;
extend MethodCall,MethodReturn

UEVENT
eventsIn : UOID→ P(UEVENT)
eventsOut : UOID→ P(UEVENT)
EventStore ⊆ (UOID→ Buffer(UEVENT))

UMESSAGE
MsgEvent : UMESSAGE → UEVENT
sender, receiver : UMESSAGE → UOID
msgIn,msgOut : UOID→ P(UMESSAGE)

callsOf : UOID× UOPN × UOID× UTHREAD→ P(UMESSAGE)
callsOf : UOID→ P(UMESSAGE)

returnsOf : UOID× UOPN × UOID× UTHREAD→ P(UMESSAGE)
returnsOf : UOID→ P(UMESSAGE)

USIGNAL ⊆ UMESSAGE

This theory describes events, messages, and the event store.

Definition C.1.6 (Object state summary)

State
extend ObjectStates2

STATE ⊆ DataStore× ControlStore× EventStore
oids : STATE → P(UOID)
OSTATE = INSTANCE × (UTHREAD→ Stack(FRAME))

× Buffer(UEVENT)
state : STATE × UOID→ OSTATE
states : UOID→ P(OSTATE)

state : STATE × P(UOID)→ (UOID→ OSTATE)
states : P(UOID)→ P(UOID→ OSTATE)

This theory describes the object states.

105

Definition C.1.7 (ESTS summary)

ESTS
extend EventSTS;

† : UTHREAD→ †(UTHREAD)

ests : UOID→ STS(S, I,O)

ESTS are event driven STS and describe object behavior. They stepwise handle incoming events and
allow to describe interleaving and concurrency on a rather fine grained level.

Definition C.1.8 (TSTS summary)

TSTS
extend ESTStoTSTS;

UCN
sender, receiver : UCN → UOID
channel : UEVENT → UCN
inC, outC : UOID→ P(UCN)
csort : UCN → P(UEVENT)
beh : UOID→ Bcsort(I,O)
beh : P(UOID)→ Bcsort(I,O)
inC, outC : P(UOID)→ P(UCN)

tsts : UOID→ TSTScsort(S1, I1,O1)
tsts : P(UOID)→ TSTScsort(S, I,O)

TSTS are time driven STS. They describe object behavior in a timed form. A step handles all incoming
events of that time frame.

106

D List of Figures

1.1 General strategy for the definition of the semantics of UML 2.0 6
1.2 Theories that constitute the system model . 7

2.1 Theory Type and its dependencies. 16
2.2 Theory Object and its dependencies. 21
2.3 Theory Data and its dependencies. 34
2.4 Example structure of a system, modeled as a UML class diagram 35
2.5 Example data snapshots of a system model as a UML object diagram. 36

3.1 Theory Control and its dependencies. 47
3.2 Extended class diagram with methods. 47
3.3 Thread-centric view for the example control store. 49

4.1 Theory Events and its dependencies. 56

5.1 Theory State and its dependencies. 59

6.1 Factorial Example . 62
6.2 Theory ESTS and its dependencies. 68

7.1 Theory TSTS and its dependencies. 76

B.1 Parallel composition with feedback . 95

107

E List of Definitions

Definition 1.6.1 This is a definition . 10
Definition 2.1.1 Types and values . 12
Definition 2.2.1 Basic types . 14
Definition 2.2.2 Basic type Void . 15
Definition 2.3.1 Variables, attributes, parameters . 15
Definition 2.5.1 Classes and instances . 18
Definition 2.5.3 Attribute access . 20
Definition 2.5.4 Introduction of Nil . 20
Definition 2.6.1 Subclassing. .21
Definition 2.8.1 The data store .24
Definition 2.8.2 DataStore Infrastructure . 25
Definition 2.10.1 Basic definitions for associations . 29
Definition 3.1.1 Definition of operations . 40
Definition 3.1.2 Definition of type safety on operations . 41
Definition 3.2.1 Definition of methods . 42
Definition 3.2.2 Relationship between method and operation . 43
Definition 3.3.1 Stack frames . 44
Definition 3.4.1 The control store in centralized version . 45
Definition 3.5.1 The control store in object-centric version . 46
Definition 4.1.1 EventStore and object event signature . 52
Definition 4.1.2 Object message signature . 52
Definition 4.2.1 Method call messages . 53
Definition 4.2.2 Return messages . 53
Definition 4.3.1 Signals as asynchronous messages . 54
Definition 5.1.1 State space of an individual object . 57
Definition 5.2.1 State space of sets of objects . 58
Definition 6.1.2 The stepper for an STS . 61
Definition 6.2.1 Event-based STS for objects . 64
Definition 7.1.1 Channel signatures of objects . 72
Definition 7.1.3 Behavior of individual objects . 72
Definition 7.1.4 Behavior of object compositions . 73
Definition 7.2.1 Behavior as TimedSTS . 73
Definition 7.3.1 General mapping between ESTS and TSTS . 75
Definition 7.4.1 Definition of the system model as a universe . 76
Definition A.1.1 Functions . 83
Definition A.1.2 Logic . 83
Definition A.1.3 Sets . 84
Definition A.2.1 Collections .84
Definition A.2.2 List . 84
Definition A.2.3 Stack . 85
Definition A.2.4 Buffer . 85
Definition A.3.1 Basic structure of records . 86

108

Definition A.3.2 Attribute selection for records . 86
Definition A.4.1 Cartesian products (tuples) . 87
Definition A.4.2 Cartesian products and records . 87
Definition B.2.1 Definition of streams . 90
Definition B.2.3 More operations on streams . 91
Definition B.2.5 Timed streams . 92
Definition B.2.6 Channels .92
Definition B.2.7 Channel operations . 93
Definition B.2.8 Definition of channels time slices . 93
Definition B.2.9 Component interfaces and behavior . 94
Definition B.2.11 Deterministic component implementation . 95
Definition B.2.13 Component composition . 96
Definition B.3.1 I/O∗-STS . 97
Definition B.3.2 Deterministic STS . 98
Definition B.4.1 Timed STS . 98
Definition B.4.2 Component composition . 99
Definition B.4.4 Interface abstraction for a TSTS . 100
Definition C.1.1 Type infrastructure summary .102
Definition C.1.2 Object infrastructure summary . 103
Definition C.1.3 The DataStore with all its elements . 103
Definition C.1.4 Object infrastructure summary . 104
Definition C.1.5 Event and message summary . 105
Definition C.1.6 Object state summary . 105
Definition C.1.7 ESTS summary. .106
Definition C.1.8 TSTS summary. .106

109

F List of Lemmata and Variation Points

Variation Point 2.1.2 Values having unique types assigned . 13
Variation Point 2.4.1 Basic structure of record types . 17
Variation Point 2.4.2 Records including attribute selection . 17
Variation Point 2.4.3 Cartesian products . 18
Lemma 2.5.2 oids is disjoint . 19
Variation Point 2.7.1 Subclassing respects structure . 22
Variation Point 2.7.2 Antisymmetric subclass relation . 22
Variation Point 2.7.3 Objects are values . 23
Variation Point 2.7.4 A sketch for Generic Classes .23
Variation Point 2.8.3 Set of objects is finite at every time . 25
Variation Point 2.8.4 Locations as pointers to mutable store . 26
Variation Point 2.8.5 Reference types . 27
Variation Point 2.9.1 Modeling static attributes . 28
Variation Point 2.10.2 Simplified associations . 29
Variation Point 2.10.3 Binary associations . 30
Variation Point 2.10.4 A realization for associations as attributes . 31
Variation Point 2.10.5 A realization for associations using association classes . 32
Variation Point 2.10.6 A realization for associations using collections . 33
Variation Point 2.10.7 Qualified and ordered association . 33
Variation Point 2.10.8 Qualified Associations using Attributes . 34
Variation Point 3.1.3 Stronger version of type safety on operations . 41
Lemma 3.5.2 Control store representations are equivalent . 46
Variation Point 3.7.3 A single thread only . 49
Variation Point 3.7.4 Objects communicate via messages only . 49
Variation Point 3.7.5 Some objects are regarded active . 50
Variation Point 3.7.6 Threads can be regionally localized . 50
Lemma 5.2.2 State space composition . 58
Variation Point 6.1.1 Classification of program counters .60
Variation Point 6.1.3 Control flow STS for methods . 61
Variation Point 6.2.2 Deterministic ESTS for deterministic objects . 65
Variation Point 6.2.3 ESTSin . 65
Variation Point 6.2.4 ESTSstep . 66
Variation Point 6.2.5 ESTScall . 66
Variation Point 6.2.6 ESTSend . 67
Variation Point 6.2.7 Composing an ESTS . 67
Variation Point 6.2.8 Scheduling in the ESTS . 68
Variation Point 6.4.1 Central system scheduling . 69
Variation Point 6.4.2 System STS . 70
Variation Point 6.4.3 System STS alternative . 70
Variation Point 6.4.4 Components in a system context . 70
Lemma 7.1.2 Channels disjoint . 72
Variation Point 7.3.2 Scheduling in the TSTS . 75

110

Lemma A.4.3 Mappings between tuples and records are inverse . 87
Lemma B.2.2 Properties for streams 1 . 90
Lemma B.2.4 Properties for streams 2 . 91
Lemma B.2.10 Properties of behavior functions . 94
Lemma B.2.12 Properties of realizability . 95
Lemma B.2.14 Properties of behavior function composition . 96
Lemma B.4.3 Properties of TSTS composition . 99
Lemma B.4.5 TSTS composition is fully abstract . 100

111

G List of Example Definitions

Example 1.6.2 This is how an example looks like . 11
Example 2.1.3 Types and values: simple UTYPE . 13
Example 2.1.4 Types and values: polymorphic values . 14
Example 2.3.2 Unique variables distinguished by namespace . 16
Example 2.12.1 Structure example, part 1 . 36
Example 2.12.2 Structure example, part 2 . 37
Example 2.12.3 Example data store . 38
Example 3.4.2 Centralized view on concurrently executing threads . 45
Example 3.5.3 Object-centric view on concurrently executing threads . 46
Example 3.7.1 Control example, part 1 . 48
Example 3.7.2 Control example, part 2 . 48
Example 4.3.2 A handler method for signals . 54
Example 4.4.1 Event store example . 56
Example 5.2.3 Object state, comprising of data, control, and events . 59
Example 6.1.4 Factorial example, Part 1 . 63
Example 6.1.5 Factorial example, Part 2 . 64

112

Technische Universität Braunschweig
Informatik-Berichte ab Nr. 2004-01

2004-01 T.-P. Fries, H. G. Matthies A Review of Petrov-Galerkin Stabilization Approaches and
an Extension to Meshfree Methods

2004-02 B. Mathiak, S. Eckstein Automatische Lernverfahren zur Analyse von
biomedizinischer Literatur

2005-01 T. Klein, B. Rumpe, B. Schätz
(Herausgeber)

Tagungsband des Dagstuhl-Workshop MBEES 2005:
Modellbasierte Entwicklung eingebetteter Systeme

2005-02 T.-P. Fries, H. G. Matthies A Stabilized and Coupled Meshfree/Meshbased Method for
the Incompressible Navier-Stokes Equations — Part I:
Stabilization

2005-03 T.-P. Fries, H. G. Matthies A Stabilized and Coupled Meshfree/Meshbased Method for
the Incompressible Navier-Stokes Equations — Part II:
Coupling

2005-04 H. Krahn, B. Rumpe Evolution von Software-Architekturen
2005-05 O. Kayser-Herold, H. G. Matthies Least-Squares FEM, Literature Review
2005-06 T. Mücke, U. Goltz Single Run Coverage Criteria subsume EX-Weak Mutation

Coverage
2005-07 T. Mücke, M. Huhn Minimizing Test Execution Time During Test Generation
2005-08 B. Florentz, M. Huhn A Metamodel for Architecture Evaluation
2006-01 T. Klein, B. Rumpe, B. Schätz

(Herausgeber)
Tagungsband des Dagstuhl-Workshop MBEES 2006:
Modellbasierte Entwicklung eingebetteter Systeme

2006-02 T. Mücke, B. Florentz, C. Diefer Generating Interpreters from Elementary Syntax and
Semantics Descriptions

2006-03 B. Gajanovic, B. Rumpe Isabelle/HOL-Umsetzung strombasierter Definitionen zur
Verifikation von verteilten, asynchron kommunizierenden
Systemen

2006-04 H. Grönniger, H. Krahn, B. Rumpe,
M. Schindler, S. Völkel

Handbuch zu MontiCore 1.0 - Ein Framework zur Erstellung
und Verarbeitung domänenspezifischer Sprachen

2007-01 M. Conrad, H. Giese, B. Rumpe,
B. Schätz (Hrsg.)

Tagungsband Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme III

2007-02 J. Rang Design of DIRK schemes for solving the
Navier-Stokes-equations

2007-03 B. Bügling, M. Krosche Coupling the CTL and MATLAB
2007-04 C. Knieke, M. Huhn Executable Requirements Specification: An Extension for

UML 2 Activity Diagrams
2008-01 T. Klein, B. Rumpe (Hrsg.) Workshop Modellbasierte Entwicklung von eingebetteten

Fahrzeugfunktionen, Tagungsband
2008-02 H. Giese, M. Huhn, U. Nickel,

B. Schätz (Hrsg.)
Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteter Systeme IV

2008-03 R. van Glabbeek, U. Goltz,
J.-W. Schicke

Symmetric and Asymmetric Asynchronous Interaction

2008-04 M. V. Cengarle, H. Grönniger,
B. Rumpe

System Model Semantics of Statecharts

2008-05 M. V. Cengarle, H. Grönniger,
B. Rumpe

System Model Semantics of Class Diagrams

2008-06 M. Broy, M. V. Cengarle,
H. Grönniger, B. Rumpe

Modular Description of a Comprehensive Semantics Model
for the UML (Version 2.0)

