
G. Chastek (Ed.): SPLC2 2002, LNCS 2379, pp. 188–197, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Product Line Annotations with UML-F

Wolfgang Pree1, Marcus Fontoura2, and Bernhard Rumpe3

1 Department of Computer Sciences (guest), Univ. of California, Berkeley,
pree@eecs.berkeley.edu

2 IBM Almaden Research Center, 650 Harry Road,
95120 San Jose, CA, U.S.A

fontoura@almaden.ibm.com
3 Software and Systems Engineering, Munich University of Technology,

D-80290 Munich, Germany,
rumpe@acm.org

Internet: http://uml-f.net/

Abstract. The Unified Modeling Language (UML) community has started to
define so-called profiles in order to better suit the needs of specific domains or
settings. Product lines1 represent a special breed of systems—they are extensi-
ble semi-finished pieces of software. Completing the semi-finished software
leads to various software pieces, typically specific applications, which share the
same core. Though product lines have been developed for a wide range of do-
mains, they apply common construction principles. The intention of the UML-
F profile (for framework architectures) is the definition of a UML subset, en-
riched with a few UML-compliant extensions, which allows the annotation of
such artifacts. This paper presents aspects of the profile with a focus on patterns
and exemplifies the profile’s usage.

1 What Is a UML Profile?

The UML is a large and regrettably complex language. Still, there are many requests
to explicitly represent additional features that cannot be described comfortably using
the current version of the UML. Therefore, the UML provides mechanisms, in par-
ticular stereotypes and tagged values, which allow extensions. These extensions may
be defined and grouped in so-called profiles.

Thus, a UML profile is defined as an extension of the standard UML with specific
elements. A profile provides new notational elements and specializes the semantics of
some elements. It may also restrict the use of UML elements. For example, [2] de-
scribes in further detail the profiling mechanism and a useful extension of it, called
prefaces.

A UML profile may target a specific application domain. UML-RT, the real-time
profile, is one prominent example. Other profiles may provide tool-specific exten-

1 We use the terms product line and framework synonymously.

Product Line Annotations with UML-F 189

sions. For example, these might shape the UML so that it is better suited for modeling
Web-based systems, as the one described in [1]. A Java profile would restrict the
UML to single-class inheritance. The UML-F profile, which is described in detail in
[4], supports product line annotations.

2 A Selection of Basic UML-F Tags

Though the UML version 1.3 already lists 47 stereotypes and 7 tagged values [6] and
version 1.4 increased these numbers considerably, only a small number of them are
particularly useful for product line annotations. This section picks out some of the
tags2 introduced by the UML-F profile for that purpose.

2.1 Product Line and Application Classes

Many product lines come together with prefabricated application classes that do not
belong to the product line itself. These additional classes can be studied in order to
understand the standard usage of a framework by examining and adapting their code,
whereas the product line classes themselves are usually not subject to change.

«framework»
Composite

*

parts

…

«application»
Leaf1

«application»
Leaf2

«framework»
Component

«utility»
String

«utility»
FileOutputStream

where a class
belongs

Fig. 1. «framework», «application» and «utility» Tags

The «application» tag marks application-specific classes. During the product line
adaptation process, this tag may mark newly introduced classes as well. The «frame-
work» tag marks classes and interfaces belonging to the product line. A third category
of classes belongs to the utility level, as these classes are provided as basic classes by
utility libraries or the runtime system. These may be tagged by «utility». Figure 1
exemplifies their usage. If a package is marked with one of these tags, then all of its
classes and interfaces are implicitly marked as such. Table 1 summarizes the meaning
of these UML-F tags.

 Java and all Java-based marks are trademarks of Sun Microsystems, INC. in the U.S. and

other countries.
2 UML-F provides a slightly simplified mechanism that unifies standard UML stereotypes and

tagged values to UML-F tags [4].

190 Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe

Table 1. UML-F Class Tags for Discerning Between Framework and Application Components

Tag-name Applies to Value
type

Description

 «application» Class, Package
 Interface

 Bool The class/interface/package
does not belong to a frame-
work, but to an application.

 «framework» Class, Package
 Interface

 Bool The class/interface/package
belongs to the framework.

 «utility» Class, Package
 Interface

 Bool The class/interface/package
belongs to a utility library or

the runtime system.

2.2 Completeness and Abstraction

The following UML-F tags deal only with the visual representation of elements; they
do not define any properties of the annotated modeling elements.

The standard UML provides the ellipsis (…) to mark the omissions of attributes
and methods. However, we also find it useful to be able to mark elements as com-
plete. Therefore, we propose the UML-F © tag to mark completeness and the ellipsis
tag to explicitly mark incompleteness. In accordance with standard UML, the ellipsis
tag is the default. This means that class diagrams and all their elements are considered
incomplete unless explicitly marked as complete via the use of the © tag.

Figure 2 shows three representations of the class Human. The first is complete,
whereas the second partly omits the attribute compartment, and the third omits both
the attribute and method compartments.

Human

getHeight()
celebrateBirthday()

height: Int

Human

Human

getHeight()
celebrateBirthday()

age: Int
height: Int

…

©

©

…

completeness tag

incompleteness tag

Fig. 2. Three Representations of the Same Class

Product Line Annotations with UML-F 191

3 UML-F Pattern Tags

Many patterns written up in the pioneering pattern catalog [5] by the Gang-of-Four
(GoF—the four authors Gamma, Helm, Johnson and Vlissides) are product lines that
rely on a few framework construction principles. This section discusses the relation-
ship between the construction principles and the GoF catalog patterns, and introduces
the UML-F tags for annotating both the framework construction principles as well as
design patterns. Instead of listing the UML-F tags for each of the construction princi-
ples and patterns, we explain and exemplify how to derive the UML-F tags in a
straightforward manner from their static structure.

3.1 Unification Principle – Adaptation by Inheritance

Hook methods can be viewed as placeholders that are invoked by more complex
methods that are usually termed template methods3 [3, 5, 7, 8]. The simple idea be-
hind hook methods is that overriding hooks allows changes of the corresponding
template method’s behavior without having to touch the source code of the class to
which the template method belongs.

The essential set of framework construction principles can be derived from consid-
ering all possible combinations between template and hook methods within one class
or in two classes. The reason why this becomes feasible is that the abstract concepts
of templates and hooks fade out domain-specific semantics to show the clear means
of achieving extensibility in object-oriented technology. The UML-F tags for explic-
itly marking templates and hooks are «template» and «hook». In the sample UML-F
diagram in Figure 3, the convert () method in the class CurrencyConverter is a
template method invoking round () as its hook.

CurrencyConverter

convert(...)

round(val: double): double
. . .

«template»

«hook»

«template, hook»

Fig. 3. UML-F Tags Annotating Template and Hook Methods

These UML-F tags can be used not only to mark methods, but also to mark classes
and interfaces. Attaching the «hook» tag to a class or interface means that it contains
a hook method. The «template» tag has the analogous meaning, though it only makes
sense to attach it to classes and not to interfaces, since interfaces cannot provide
method implementations. Figure 3 attaches both tags to the CurrencyConverter class,
applying the UML-F tag rule that allows the listing of multiple tags.

3 Template methods must not be confused with the C++ template construct, which has a com-

pletely different meaning.

192 Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe

The template-hook combination in which the template method and its correspond-
ing hook methods reside in the same class, (as in the case of Figure 3) corresponds to
the Unification construction principle. The general description of that principle calls
the class TH (see Figure 4). The recipe for deriving the tags is to concatenate the
construction principle name with each of the elements of the general structure of the
construction principle. Thus, three UML-F tags annotate the Unification construction
principle in a framework:

• «Unification–TH» marks the class
• «Unification–t» marks the template method
• «Unification–h» marks the hook method(s)

As a short cut, we suggest using the tags «Unif–TH», «Unif–t» and «Unif–h».
Compared to the bare-bones template and hook tags, the explicit stating that the Uni-
fication construction principle underlies a certain aspect of the framework provides
more semantic information. In particular, one who is familiar with the Unification
construction principle might, for example, infer the degree of flexibility associated
with that construction principle: Adaptations have to be accomplished in subclasses
and thus require an application restart. This illustrates the layered structure of the
UML-F tags – more “semantic-rich” tags can be defined in terms of more basic ones.
This layered structure of the UML-F profile is further described in section 3.2.

TH

t()

h()

«Unif–t»

«Unif–h»

«Unif–TH»

Fig. 4. Static Structure of the Unification Construction Principle

Figure 5 applies the Unification tags to annotate the CurrencyConverter class. In
UML-F, any name can be defined for a group of tags. We chose the name Rounding
for the Unification construction principle in that case. Although Figure 5 and Figure 3
represent the same aspect of the product line, Figure 5 makes the underlying construc-
tion principle explicit, while Figure 3 uses the more basic template-hook tags.

Conceptually, UML-F tags that correspond to the static structure of a framework
construction principle provide a means for pinpointing the methods and classes in a
product line that apply a particular design. Figure 6 illustrates that aspect. The arrows
express the mapping of the structural components of the Unification construction
principle to their manifestation in a certain part of a framework.

The Separation construction principle derives from the Unification construction
principle by moving the hook method to a separate class H. The class T containing
the template method has an association to H. The template method in T invokes the
hook method in H through this association. The difference to the Unification con-
struction principle is that the behavior of T can be changed at runtime by plugging in
a specific H instance. The UML-F annotation is analogous to the Unification principle
and discussed in detail in [4].

Product Line Annotations with UML-F 193

CurrencyConverter

convert(...)
round(val: double): double

«Unif–TH: Rounding»

«Unif–t: Rounding»
«Unif–h: Rounding»

Fig. 5. UML-F Annotation of a Sample Application of the Unification Construction Principle

TH

t()

h()

Unification
construction principle

CurrencyConverter

convert(...)
round(val: double): double

«Unif–TH: Rounding»

«Unif–t: Rounding»
«Unif–h: Rounding»

«template»

«hook»

Fig. 6. Rationale Behind the Unification UML-F tags

3.2 UML-F Tags for Design Patterns

Analogous to the Unification and Separation construction principles, the structure of a
design pattern determines the particular set of UML-F tags. In the case of the GoF
patterns, each pattern description has a section labeled Structure that shows a class
diagram. The class and method names in such a diagram, together with the pattern
name, form the set of UML-F tags: «PatternName–methodName», «PatternName–
ClassName» and for potential future Java- or C#-based versions of the GoF catalog or
other pattern catalogs: «PatternName–InterfaceName». In occasions where associa-
tions and attributes play a role, tags of the form «PatternName-associationLabel» and
«PatternName-attributeName» are present as well. This section illustrates that de-
scription scheme for the GoF pattern Factory Method.

Consider the layered relationship between the UML-F tags sets4 for the design pat-
terns, construction principles, and the template and hook tags (see Figure 7). The
essential framework construction principles Unification, Separation, Composite,
Decorator and Chain-Of-Responsibility represent the possible combinations of tem-
plates and hooks in one or two classes/interfaces. The patterns Composite, Decorator
and Chain-Of-Responsibility are identical to those core framework construction prin-
ciples that result from combinations of templates and hooks via inheritance. We sug-
gest the names and structure of these three patterns as the basis from which to derive
the UML-F tag sets.

4 The tags of a construction principle or pattern form one tag set. For example, the three tags of

the Unification principle form the Unification tag set (<<Unif-TH>>, <<Unif-t>>, and
<<Unif-h>>).

194 Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe

Though the other GoF framework patterns and domain-specific patterns rely on ei-
ther the Unification or Separation of templates and hooks, product line developers
who need to express the richer semantic information inherent in these patterns, anno-
tate a product line by means of the corresponding UML-F tag sets. The application of
one of these patterns expresses the intended use and adaptation possibilities beyond
the static structure to which a pattern is often reduced. The semantics of a pattern tag
are defined through its structural and behavioral constraints, as well as its intended
use.

UML-F tag sets for framework construction principles

UML-F tag sets for framework-related GoF patterns

UML-F tags for templates and hooks

UML-F tag sets for other pattern catalogs or domain-specific patterns

relies on

Factory Method

Template Method Bridge

State

Strategy

Observer
Command

Builder Abstract Factory

Prototype

Interpreter

Unification Separation

Composite

Chain-Of-Responsibility

Decorator

«template» «hook»

Calculation . . .

Fig. 7. Layers of UML-F Tag Sets

3.2.1 UML-F Tags for the Factory Method Pattern.
Figure 8 shows the static structure of the Factory Method pattern according to the
GoF catalog [5]. Note that the diagrams in the GoF catalog adhere to the Object Mod-
eling Technique (OMT) [8] notation which significantly influenced the UML, but
which is no longer used in its original form. All the diagrams in this paper adhere to
the UML notation.

According to the static structure of the Factory Method pattern5, the UML-F tag set
consists of these tags6:
• «FacM–Creator»
• «FacM–facM»
• «FacM–anOp»
• «FacM–Product»
• «FacM–ConcreteProduct»

5 The tags adopt the Java convention of using uppercase first letters in class/interface names

and lowercase first letters in method names. The use of the italics style indicates an abstract
class, an interface or an abstract method.

6 We suggest the abbreviations FacM for Factory Method and anOp for anOperation.

Product Line Annotations with UML-F 195

• «FacM– ConcreteCreator»
• «FacM–facM»

One could argue that the subclasses of Creator and Product are in some cases not
relevant to documenting that pattern. So an alternative, shorter list of UML-F tags
would be: «FacM–Creator», «FacM–facM», «FacM–anOp», «FacM–Product».

. . .

factoryMethod()

ConcreteCreator

. . .

Creator

factoryMethod()
anOperation()

ConcreteProduct

return new ConcreteProduct();

Product

Fig. 8. Structure of the Factory Method Pattern (adapted from [5])

Figure 9 attaches the UML-F template and hook tags to the methods of the Creator
class. This illustrates in detail the relationship between the tag sets of the Factory
Method Pattern and the Unification construction principle. It also demonstrates the
additional semantic information provided by the Factory Method pattern. For exam-
ple, the Unification construction principle does not deal with a Product class.

3.3 Hooks as Name Designators of Pattern Catalog Entries

Hook methods form the points of predefined refinement that we call variation points
or hot spots [7]. Product line adaptation takes place at these variation points. Depend-
ing on the hook placement and template-hook method combination used, more or less
flexibility can be achieved.

. . .

Creator

factoryMethod()
anOperation()

«Unif-TH»

«Unif-h»
«Unif-t»

Fig. 9. Application of the Unification Construction Principle in the Factory Method Pattern

196 Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe

Every product line incorporates the two essential construction principles Unifica-
tion and Separation, no matter how simple or how complex the particular template
and hook methods are. Fine-grained classes apply the same construction principles as
complex classes in order to introduce flexibility. They differ only in the granularity,
the hook’s semantics (often expressed in a hook’s name), the number of defaults
provided for a hook, and the number of template-hook pairs. Thus, we can take a
fresh look at the design pattern catalog, that is, the 23 patterns published in [5].

Many entries in the pattern catalog can be regarded as small product lines7, consist-
ing of a few classes, which apply the essential construction principles in various more
or less domain-independent situations. These catalog entries are helpful when design-
ing product lines, and they illustrate typical hook semantics. In general, the names of
the catalog entries are closely related to the semantic aspects that are kept flexible by
the provided hooks.

A significant portion of the framework-centered pattern catalog entries relies on a
separation of template and hooks, that is, on the basic Separation principle. The cata-
log pattern Bridge discusses the abstract-coupling mechanism generically. Other
catalog entries that use template-hook separation introduce more specific semantics
for their hooks: Abstract Factory, Builder, Command, Interpreter, Observer, Proto-
type, State and Strategy. The names of these catalog patterns correspond to the se-
mantics of a particular hook method or the corresponding class.

3.4 UML-F Tags for Domain-Specific Patterns

Product lines contain numerous patterns that are not general enough to be published
in pattern catalogs, but that rely on one of the essential framework construction prin-
ciples. In many situations, it might be useful to introduce UML-F tag sets that explic-
itly refer to these domain-specific patterns. The definitions of these domain-specific
UML-F tag sets work in the same way as for the pattern tags. The structure of a do-
main-specific pattern defines the tags. The structure of a domain-specific pattern
should also be annotated, either by GoF pattern tags or the tags of the core construc-
tion principles. This ensures an explanation of the domain-specific pattern in terms of
already understood designs.

4 Conclusions

The intention of the UML-F profile is the identification of a UML subset, enriched
with UML-compliant extensions, which allows the annotation of product lines. Over-
all, the presented selection of key aspects of the UML-F profile pursues the following
goals:

7 These include Template Method, Factory Method; Bridge, Abstract Factory, Builder, Com-

mand, Interpreter, Observer, Prototype, State, Strategy; and Composite, Decorator, Chain-of-
Responsibility.

Product Line Annotations with UML-F 197

1. UML-F provides the notational elements to precisely annotate and document well-
known design patterns. Only a rather limited UML support currently exists for that
purpose.

2. UML-F is itself in the spirit of frameworks—straightforward extensibility is the
key to providing a suitable means for documenting any framework pattern includ-
ing the future ones.

3. UML-F comprises a lean, mnemonic set of notational elements.
4. UML-F relies on the UML standard, that is, the extensions should be defined on

the basis of the existing UML extension mechanisms.
5. The notational elements are adequate for being integrated in UML tool environ-

ments. For example, tools should be able to create hyperlinks between annotated
framework patterns and the corresponding online pattern documentation.

More profiles will be standardized by the OMG in the future; sound proposals from
various communities will get the process of defining and standardizing UML profiles
started. In that sense, UML-F sets the stage for the UML profile for product lines.

References

1. Conallen, J.: Building Web Applications with UML. Addison-Wesley, Object Technology
Series (1999)

2. Cook, S., Kleppe, A., Mitchell, R., Rumpe B., Warmer, J., Wills, A.: Defining UML
Family Members Using Prefaces. In: Mingins, C., Meyer, B. (eds): TOOLS 32 Confer-
ence Proceedings. IEEE Computer Society (1999)

3. Fayad, M., Johnson, R. and Schmidt, D.: Building Application Frameworks: Object-
Oriented Foundations of Framework Design. Wiley & Sons (1999)

4. Fontoura, M., Pree, W., Rumpe, B.: The UML Profile for Framework Architectures.
Pearson Education/Addison-Wesley (2002)

5. Gamma, E., Helm, R., Johnson, R. Vlissides, J.: Design Patterns—Elements of Reusable
Object-Oriented Software. Reading, Massachusetts: Addison-Wesley (1995)

6. OMG: Unified Modeling Language Specification. Version 1.3 R9 (1999)
7. Pree, W.: Design Patterns for Object-Oriented Software Development. Wokingham: Ad-

dison-Wesley/ACM Press (1995)
8. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented

Modeling and Design, Prentice Hall, Englewood Clifs (1994)
9. Wirfs-Brock, R., Johnson R.: Surveying Current Research in Object-Oriented Design.

Communications of the ACM, 33:9 (1990)

	1 What Is a UML Profile?
	2 A Selection of Basic UML-F Tags
	2.1 Product Line and Application Classes
	2.2 Completeness and Abstraction

	3 UML-F Pattern Tags
	3.1 Unification Principle – Adaptation by Inheritance
	3.2 UML-F Tags for Design Patterns
	3.3 Hooks as Name Designators of Pattern Catalog Entries
	3.4 UML-F Tags for Domain-Specific Patterns

	4 Conclusions
	References

