

 A manager´s view on large scale XP projects

 Bernhard Rumpe Peter Scholz
 Software & Systems Engineering Department of Computer Science
 Munich University of Technology University of Applied Sciences Landshut
 Arcisstr. 21 Am Lurzenhof 1
 D-80333 Munich, Germany D-84036 Landshut, Germany
 +49 89 289 28129 +49 871 506 679
 Bernhard.Rumpe@in.tum.de Peter.Scholz@fh-landshut.de

ABSTRACT
XP is a code-oriented, light-weight software engineering
methodology, suited merely for small-sized teams who
develop software that relies on vague or rapidly changing
requirements. Being very code-oriented, the discipline of
systems engineering knows it as approach of incremental
system change. In this contribution, we discuss the
enhanced version of a concept on how to extend XP on
large scale projects with hundreds of software engineers
and programmers, respectively. A previous version was
already presented in [1]. The basic idea is to apply the
"hierarchical approach", a management principle of
reorganizing companies, as well as well-known moderation
principles to XP project organization. We show similarities
between software engineering methods and company
reorganization processes and discuss how the elements of
the hierarchical approach can improve XP. We provide
guidelines on how to scale up XP to very large projects e.g.
those common in telecommunication industry and IT
technology consultancy firms by using moderation
techniques.

KEYWORDS
XP, reorganization, project organization, project
management, hierarchical approach.

1 INTRODUCTION
Extreme Programming (XP) [2,11] is the most prominent
of the new generation of light-weight (also called agile)
methodologies for small-sized teams developing software
with vague or rapidly changing requirements. XP can be
regarded as an explicit reaction to the complexity of today's
modelling techniques like the Unified Process [3], the V-
model [4], Catalysis [5], or the Open Modeling Language
[6]. XP focuses on a system of best practices that are
deeply interconnected, disregarding many others used by
other methodologies. XP will evolve, reducing its
weaknesses and increasing its strengths. This article
suggests an improvement in one of its obvious weaknesses:

XP is designed for a single small team of less than a dozen
team members. Therefore, it has its problems to scale up
for larger projects. In those cases, direct team
communication is no longer possible without any additional
support. Fortunately, applying the XP approach in projects

seems to considerably downsize the number of necessary
participants, but there is still a number of areas, where
hundreds of developers work on producing one single
software product. For example, the telecommunication
industry is under enormous pressure to add and improve
functionality of their products. The time to market span in
the mobile phone business needs fast and flexible process
for large projects. Switching systems need to be adapted for
each customer and for each country: XP is just starting to
play its role here too.The main obstacles against scaling up
of XP are lack of documentation (therefore the exponential
increase of necessary communication between developers),
lack of stable interfaces and stable requirements.
Consequently, scaling up of XP will probably be
indispensable in order to adopt methodical practices from
other methodologies.

From the discipline of systems engineering, we are
acquainted with three approaches suited to manage a
reorganization project. In the Total Systems Approach [7],
the desired properties of a new system are first defined and
then the whole system is introduced into the new
organization like a big-bang invention. In the Incremental
Systems Approach, a set of small changes incrementally
leads to local optimisation. Through small changes of the
company structure and organization and its supporting
software system, a series of small localized improvements
lead to a sub-optimal organization form. As both
approaches have several drawbacks, discussed below,
system engineering provides a third approach called
"Hierarchical structuring" of system development. This
approach combines the advantages of both other
approaches, usually leads to better reorganization projects,
and therefore provides an overall optimisation.

In [1] similarities between the extreme programming
approach and the incremental systems developing approach
have been discussed and the combination of these two
approaches from systems engineering has been transferred
to the software engineering discipline. There are two basic
advantages: (1) the combination leads to a scale up of the
extreme programming approach to larger projects by
hierarchically structuring the teams, and (2) it features a
successful methodology for the organization of the
hierarchical approach which can be transferred to the

software engineering discipline. Both points have
interesting aspects. Of course, scaling XP up to a larger
project allows to apply the XP approach even if the system
becomes more complex needing more people to be
involved. Another advantage is that there is a proven
methodology to get a hierarchical reorganization process
organized; this can be adopted by the software engineering
discipline.

This contribution is structured as follows. In Section 2 we
introduce the new approach to reorganize parts of the
company, discuss the analogy to software process models
and point out some improvements for XP. In Section 3 we
discuss management techniques specifically suited to
supplement the new hierarchical XP approach. A brief
overview of the aspects of XP which are of interest in this
context can for instance be found in [1].

2 HIERARCHICAL XP
Today it is for all companies imperative to supply their
business with extensive software support. A company
reorganization always goes together with the adaptation of
existing and the introduction of new software and all too
often also the introduction of new software does or should
go along with adaptation of the companies business
processes and structures. Therefore, it is a natural
consequence to combine suitable approaches that come
from technical and management disciplines. In hierarchical
XP, two approaches with similar characteristics are
combined. The holistic approach (from systems theory)
has several characteristics in common with the classical
software engineering approaches, starting with the
Waterfall model, but also newer object-oriented
approaches, like the Unified Process [3]. They e.g. share a
centralized approach providing a small coordination team
with great power, but lack adequate customer/employee
participation.

The incremental approach (from systems theory) compares
well to XP. Both are rather decentralized and both focus
minor on local improvements of existing
structures/systems. Such improvements can be released
early and get a fast feedback. Their major advantages are:
high involvement of employees/customers, and as a result,
high acceptance of the solution. XP and the incremental
approach do have also some disadvantages in common: (1)
applying this approach to several local problems does
usually not lead to a shared improvement with multiple
teams. Instead, local improvements may contradict each
other, (2) the approach is unstructured and can therefore not
be used for working out an overall concept by a complex
problem where an involvement of several persons is
necessary.

In systems theory, the hierarchical approach was developed
as a combination of the holistic and incremental approaches
and has been carried over to the software development
discipline in [1]. This approach starts from the extreme

programming approach and builds a hierarchical structure
upon it. The advantages of this approach have partly been
discussed before: While largely retaining a light-weight
methodology, it becomes feasible to structure larger
projects into a bunch of smaller XP projects that still have a
common target to achieve. The approach basically consists
of two important elements: (1) on the top-level we set up a
goal-oriented project management (called steering
committee) that organizes the problem as a high-level
structure by working out a rough concept, (2) each of the
now localized problem parts is solved in an extreme
programming approach by its own XP team. The following
figure demonstrates this advantage of the hierarchical
approach compared to the other two approaches. Each
circle is a team member, tight connections of circles form a
team.

Holistic ApproachHolistic Approach Hierarchical Approach Incremental Approach

Target Target Target

Holistic Approach Hierarchical Approach Incremental ApproachHolistic ApproachHolistic Approach Hierarchical Approach Incremental Approach

Target Target Target

Holistic Approach Hierarchical Approach Incremental Approach

Figure 1: Comparison of three approaches

The XP teams function primarily on an independent basis;
nevertheless, they are coupled by a top-level management
team, called "steering committee", that keeps track on the
overall goal and measures local improvements. It is
important to keep arising cross-dependencies as lean as
possible. However, the complexity of today's information
systems, at least partly arises from the still insufficient
mechanisms to define crisp and small interfaces between
software parts. Dynamic restructuring of the XP teams is
useful to flexibly react on varying workloads. So over
time, the project structure e.g. splits as follows:

XP 3

Time

Projects

Steering Committee

XP sub-project 1

XP 2

XP 6

XP 9

XP 3 XP 7

XP 5

XP 10XP 8

XP 3

Time

Projects

Steering Committee

XP sub-project 1

XP 2

XP 6

XP 9

XP 3 XP 7

XP 5

XP 10XP 8

Figure 2: Hierarchic project structure

By organizing the software development process in a
hierarchical manner the focus is given on one common
target and a structured process to reach this goal is used.
The involvement of the employees will lead to a high
acceptance for the solution. Ideally XP project teams are
defined in a similar way as company departments are. A
certain part of the software infrastructure of a company is
not localized in one (or a few) departments, but its usage
spread over a number of departments. This can e.g. be
handled by identifying pilot departments that are able to
cover the needs and desires of other departments' users as
well.

These considerations show that the hierarchical extreme
programming approach needs a focussed, yet lean project
organization. Five major principles can be identified that
characterize the hierarchical approach:

1. Customer participation: the solution is worked out with
the customer/employee to reach a high acceptance. This
is in particular import ant for the customers to accept the
resulting new software system/company structure.

2. The whole system is divided up into subsystems with a
lean and crisp interface. The inputs and outputs, namely
the data structures and the information flow between the
subsystems need to be clearly defined. Subsystems are
implemented respectively evolved through XP teams.

3. Each XP team targets its associated subsystem, thus
contributing to the main target, namely the development
of the whole system.

4. The worked out software solutions will be improved
like in an incremental process to be successful very
quickly. In a number of releases the team explores and
extends the desired system functionality.

5. The hierarchical approach is well organized with a
project team and a steering committee. The steering
committee is an ideal place to develop and maintain the
common system goals.

Most of the additional principles and practices of XP, that
have been introduced in Section 2, carry over to the
hierarchical approach without major changes. However,
some of these principles need slight enhancement.
Automated test suites become even more important when
the XP teams are connected though interfaces. Specific test
suites check functionality against mock interfaces. Further
tests need to check the correctness of the cross project
functionality and therefore the correctness of the interfaces.

3 PROJECT MANAGEMENT FOR LARGE
SCALE XP PROJECTS

As we have seen, hierarchic XP needs a focused set of
project management techniques to handle the issues aris ing
in the steering committee. In this section, we will motivate
how project management, enriched by additional
moderation and communication techniques can be applied
to this kind of large scale XP software development
projects. Recall the four values of XP: two of them have
been “communication” and “early feedback”. Hence, the
success of every XP project very much depends on how
these two values are reached. Both communication and
feedback become harder to realize with every single
additional team member involved in the team. Hence, we
have to find solutions on how to guarantee efficient
communication and feedback for every size of XP project.

In general, in large scale projects, i.e. in projects where
many persons are involved in, the communication overhead
increases dramatically. This context was first shown by
Brooks. Brooks's law, pictured in Figure 3, outlines the
relationship between the number of persons involved in a

project and the time -to-product.

Development Time

Communication
Share

Productive
Share

Minimal
Development

Time

Time

Development Time

Communication
Share

Productive
Share

Minimal
Development

Time

Time

Figure 3: Brooks's law

Brooks's law shows that the time-to-product cannot be
decreased below a certain point by just adding project
members. If this number exceeds a certain point, the
communication overhead takes over. This increasing
communication overheads limits the optimal number of
project team members to a certain number. In large scale
XP projects, however, a lot more developers than this
optimal number are involved. Hence, measures have to be
taken that allow for additionally increasing the number of
team members. The first and one of the most efficient lever
to do so is to split the team into XP subteams as done in
hierarchical XP. For the still necessary communication
moderation techniques are applied.

Moderation in XP projects aims at involving all project
members as efficiently as possible in all project phases.
This ensures that the members' ideas and energies can be
bundled up and therefore optimally brought into the
project. As a consequence, all team members pull together.
However, to be effective, moderation has to be carried out
in a systematic, structured, and open manner, that is,
without any manipulation of any kind (for instance, by
political top management conflicts). Project work that is
guided this way by a professional moderator makes a lot of
fun. In addition, moderation causes a number of further
advantages: (1) all project members are concentrated on the
working content, only, (2) all results get transparent, (3) the
cooperation, team spirit and therefore, the overall company
culture improves, and (4) the motivation of each XP project
member increases.

What is the moderator's task in XP projects?
She or he has to support the programmers in a way that
problems can be solved by themselves, i.e. by team work.
Also, the efficiency with respect to the project return on
investment has to be increased by the moderation.
Furthermore, solution concepts should be worked out that
are accepted by both programmers and the top
management. Though the moderator has a strategic position
within the project he or she also gives know-how to the
project members. However, know-how in this context
equally means strategic, technical and application know-
how. A good XP moderator knows all moderation methods
(the moderation tool box) and has understood the XP idea.

The larger the project the less likely it is that the moderator
will programme himself and therefore has not to be a good
programmer. The moderator must be like an "obstetrician"
so that complex ideas can be born, formulated, cut into
components for the subprojects and realized. Finally, he or
she takes care that the potential of each project member can
be exhausted in an optimal way. Altogether, the moderator
supports the team in questions of method, motivation,
communication, and cooperation. As in the hierarchical
approach, the subteams flexibly reorganize during the
project, he also holds a part of the responsibility to enable
appropriate reorganization, but should not be the finally
responsible person.

How can the concept of moderation be applied to very
large XP projects?
In order to work efficiently, each moderator merely is able
to support up to 6-8 pairs of programmers, which to our
experience means an average of three XP subprojects. The
interesting questions is, how to apply moderation to XP
projects with 100 and more developers.

The idea is that larger teams consisting of 6-8 pairs of
programmers is coached by its "own" moderator, smaller
teams share moderators. Every moderator is responsible for
the knowledge transfer within his team, as he is also
member of the steering committee. This enables in addition
to the intra-team knowledge transfer also an inter-team
knowledge transfer. At least the moderators of the steering
committee meet regularly by establishing "heures fixe"
(like the well-known "jour fixe" but just carried out in a
higher frequence): All moderators involved in a particular
large scale XP projects meet each other daily either in the
morning, or in the noon, or in afternoon hours to exchange
project knowledge from their teams.

In addition it is feasible to support the teams of
programmers by a team of developers who are responsible
for unit testing. This team is responsible for the overall
function tests with particular focus on correct handling on
the interfaces in both directions. Furthermore, development
team and unit testing team should meet altogether about
every four weeks in order to identify, discuss, and solve
development, quality, or process problems. These meetings
also should provide a platform for know-how exchange.

There are no additional, disciplinary organization
structures. This way, the organization is kept simple, flat,
and therefore powerful.

4 CONCLUSION
This paper focuses on the particular question how to
optimize and reorganize companies that make heavy use of
software products. First, hierarchical XP is introduced as a
software engineering method for large scale projects that
possible structures its sub-projects along business or
organizational structures. If a company is reorganized, this
usually means restructuring its software products, its

databases and network infrastructure, because a company
reorganization usually concentrates on optimization of its
business cases. In this paper, we have extended the extreme
programming approach by elements of the hierarchical
reorganization process leads to a considerable scale-up of
the XP approach. Furthermore, the XP approach extended
this way can nicely be integrated with the hierarchical
reorganization process allowing the use of both at the same
time. Furthermore, we have identified and discussed
moderation techniques that are used to coach XP
development teams.

ACKNOWLEDGEMENTS
This work was partially supported by the Bayerisches
Staatsministerium für Wissenschaft, Forschung und Kunst
through the Bavarian Habilitation Fellowship, the German
Bundesministerium für Bildung und Forschung through the
Virtual Software Engineering Competence Center (ViSEK)
and Siemens.

REFERENCES
1. C. Jacobi, B. Rumpe. Hierarchical XP – Improving XP

for large scale projects. In: Extreme Programming
Examined. G. Succi, M. Marchesi. (ed) Addison-
Wesley, 2001

2. Beck, K. Extreme Programming Explained. Addison-
Wesley. 1999

3. I. Jacobson, G. Booch, J. Rumbaugh. The Unified
Software Development Process. Addison -Wesley. 1999.

4. Koordinierungs- und Beratungsstelle der
Bundesregierung für Informationstechnik. V-Modell;
Allgemeiner Umdruck Nr. 250 Vorgehensmodell.
Bundesdruckerei Bonn. 1997.

5. D. D'Souza, A. C. Wills. Objects, Components and
Frameworks with UML. The Catalysis Approach.
Addison-Wesley. 1998

6. D. Firesmith, B. Henderson-Sellers, I. Graham, I.
OPEN Modeling Language (OML) Reference Manual.
SIGS Books. 1997

7. A. Picot, B. Lange. Synoptische versus inkrementale
Gestaltung des strategischen Planungsprozesses -
Theoretische Grundlagen und Ergebnisse einer
Laborstudie. ZfbF 31, S. 569-596. 1979

8. W. Opdyke, R. Johnson. Creating Abstract Superclasses
by Refactoring. Technical Report. Dept. of Computer
Science, University of Illinois and AT&T Bell
Laboratories. 1993

9. Fowler, M. Refactoring. Addison-Wesley, 1999
10. J. Philipps, B. Rumpe. Roots of Refactoring. In: Tenth

OOPSLA Workshop on Behavioral Semantics. Tampa
Bay, Florida, USA, October 15, 2001. K. Baclavski, H.
Kilov (eds.). Northeastern University. 2001

11. Beck, K., Fowler, M. Planning Extreme Programming.
Addison-Wesley, 2000

12. Brooks, F. The Mythical Man-Month, Addison-Wesley,
1975

