Systems, Views
and

Models of UML*

Ruth Breu, Radu Grosu, Franz Huber,
Bernhard Rumpe, Wolfgang Schwerin

email: {breur,grosu,huberf,rumpe,schwerin}
@informatik.tu-muenchen.de
Technische Universitat Miinchen

Arcisstr. 21
D-80290 Miinchen, Germany

Abstract

In this paper we show by using the example of UML, how a soft-
ware engineering method can benefit from an integrative mathemat-
ical foundation. The mathematical foundation is given by a mathe-
matical system model. This model provides the basis both for inte-
grating the various description techniques of UML and for implement-
ing methodical support. After describing the basic concepts of the
system model, we give a short overview of the UML description tech-
niques. Then we show how they fit into the system model framework
and sketch an approach to structure the UML development process
such that it provides methodological guidance for developers.

1 Introduction — Why Formalization?

“The nice thing about graphical description techniques is that everyone un-
derstands them, the bad thing, however, is that everyone understands them
in a different way.” This often heard quote captures a main property of mod-
eling techniques using semi-formal, mostly graphical notations, beginning
with the early structured modeling techniques and prevalent until today’s
object-oriented methods. The diagrammatic notations used here seem easily

*

This paper originates from the SYSLAB project, which is supported by the DFG
under the Leibnizprogramme and by Siemens-Nixdorf.

comprehensible for everyone dealing with software development. Experience
shows, however, that, except from obvious properties, these notations do in
fact bear a great number of possible divergent interpretations. To gain a
deeper and more exact understanding of the notations used, the need for
providing a stringent formal foundation for them has long been recognized
and has lead to considerable advances in the recent past. Many of these
efforts aim at providing a formal semantics for single notations. Considering
the different aspects of a system, described by different notations, captured
in a system development process, providing isolated semantics, possibly even
using diffent models as a basis, does not seem to be adequate. The complete
description of such a system is given only by the assembly of all different
views. It is therefore desirable to have a common semantic basis for all no-
tations used in a development method. This allows both to provide an exact
interpretation for diagrams in a single notation and to inter-relate diagrams
in different notations on a common basis.

The SYSLAB method (Breu et al. (1997)b) builds upon such an integrated
semantic framework, which we call the System Model. The foundations
and the basic mathematical concepts of this system model will be intro-
duced in Section 2. The SYSLAB method, just like the Unified Method, is
a view-oriented, integrated, and object-oriented development method. Its
description techniques are deliberately similar to those used in the UML.
Thus it seems worthwile to apply SYSLAB’s system model to the UML in
order to embed its description techniques into the system model’s mathe-
matical framework. What can be gained by this effort is, quite obviously,
a deeper understanding of the single notations and, as outlined above, the
possibility to more tightly intergrate the UML description techniques on a
sound mathematical basis. The benefits hereof can be enormous, especially
for tool developers, resp. tool vendors, and methodologists. Tool developers
are enabled to provide a much larger set of precise consistency conditions
than currently possible by using just the UML Meta Model which basically
represents only the abstract syntax of UML’s description techniques. Us-
ing the semantic properties of diagrams produced in different stages of a
development project and their inter-relationships, transformation tools can
be provided, which tranform, either automatically or with a human devel-
oper’s assistance, documents from one notation into another. On this ba-
sis, methodological guidelines for software developers can be elaborated and
eventually implemented in CASE tools.

The rest of the paper is organized as follows. In Section 2 we present the
basic concepts of the SYSLAB system model and in Section 3 we give a brief
overview of the UML description techniques. We then outline methodolog-
ical aspects in Section 4, where we define general properties of a software
development method and show how a development process using UML de-
scription techniques can be structured and supported by a tool. Finally, an

outlook on further steps in formalization and tool support is given in Section
5.

2 Models of Systems

In general, a system is a technical or sociological structure consisting of
a group of elements combined to form a whole and to work, function or
move interdependently and harmoniously. A system model represents certain
aspects of systems in a certain way, using certain concepts, e.g. OO-concepts,
such as classification, encapsulation etc. . One way to formulate system
models is to use mathematical techniques (e.g. sets, functions, relations,
predicates). This leads to the notion of mathematical system models.

In the following we first motivate the use of a system model and then describe
the one on which the SysLLAB method is based and which is also appropriate
for UML.

2.1 Motivation of the System Model

In the introduction we have motivated, why a formalization of UML descrip-
tion techniques is useful. We argued that a precise semantics is important
not only for the developer, but also for tool vendors, methodologists (people
that create the method) and method experts (people that use the method
and know it in detail).

We get the following requirements for a formalization:

1. A formalization must be complete, but as abstract and understandable
as possible.

2. The formalization of a heterogeneous set of description techniques has
to be integrated to allow the definition of relations between them.

This does not mean that every syntactical statement must have a formal
meaning. Annotations or descriptions in prose are always necessary for
documentation, although they do not have a formal translation. They may
however eventually be translated into formal descriptions or even into code
in the course of a software development process.

As soon as one uses description techniques with a fixed syntax and semantics,
one no longer describes systems in general but models of systems. Using
UML, for example, one models systems in terms of objects, classes etc. To
manage the complexity of formalization, we introduce a layer between the
syntactic description techniques and pure mathematics as shown in Figure
1.

This intermediate layer is the mathematical system model. On this layer,
various aspects of systems such as structure, behavior and interaction are
formulated by mathematical techniques. We call the representation of a
system, formulated solely in terms of the system model, a model of a system.
Furtheron, the set of all models that can be described in terms of a certain
system model is called the universe of this system model. Figure 2 illustrates
the ideas that are explained below.

Sequence diagrams Class descriptions

class Account ;

owner : string;
amount = Int;

‘Account);
ddai((a'lm‘ o ’A(xxmm);
endclass

Class diagrams \ / State diagrams
% System Model I ?

Mathematics \7 Formal Foundation

Figure 1: Layered formalization of description techniques

Description techniques offer syntactical elements that allow the specification
of certain views, i.e., certain aspects, of systems. One way to define a se-
mantics is to express the meaning of syntax in terms of a system model.
Using a unique system model for a set of description techniques results in an
integrative semantics for the different techniques. An integrative semantics
allows reasoning about interrelations between different views expressed by
different techniques. Notions like refinement, consistency and completeness
can be precisely defined.

A mathematical system model provides terms with a formal semantics, e.g.
functions, and can therefore serve as a basis for a formal semantics for a set
of description techniques.

With the above definitions, one can define the semantics of a document
(which is a kind of a module on the syntactical level) of a given description
technique as the set of all those models, that have the properties that are
expressed in the document.

Using a set of models and not a single one as the basis of the proposed
semantics has several advantages. For example, refinement of documents
corresponds to set inclusion. Furthermore, we get the meaning of differ-
ent documents modeling different aspects of the system by intersection of
their respective semantics. But the main reason is that, in contrast to fully
executable programming languages, description techniques allow underspec-
ification of system properties in many different ways. A proper semantics
cannot be therefore captured by a single model. For the same reason, it is
not possible to give an operational semantics in the sense that a document
specifies a single abstract machine that “executes” it.

System abstract description of
(to be developed)

specifies

Specification

1

Document

semantics of

described in
terms of

system model

<
| | | | | | |
‘ID ‘ ‘STATE ‘ ‘ MSG ‘ ‘ CN ‘ ‘MF ‘ ‘behaviomd ‘ ‘statesid ‘
‘ class ‘ L C ‘ communication ‘ input ‘ ‘ output ‘ ‘ state ‘
edium

Figure 2: System Model, Models and Specification

2.2 Definition of the System Models

The system characterisation given below is a refinement of the SysLAB
system model as presented in Klein et al. (1996) and Grosu et al. (1996), and
it is rather similar to the one used in Breu et al. (1997)b. Each document,
for instance an object diagram, is regarded as a constraint on the system
model’s universe.

The system model introduced below is especially adapted for the formal-
ization of UML. Thus, relevant aspects of UML like classes, objects, states,
messages etc. are explicitly included. A precise formalization of our UML
system model is currently under development.

Our system model is very general, covering various kinds of object-oriented
systems such as conventional object-oriented software systems, systems in-
cluding hardware components, embedded systems and real-time systems.
For the formalization of the current set of UML notations, we will only need
a specialized version of the system model, which is briefly presented below.
In the following, we describe the most important elements of our system
model.

The structure of a system is, according to object-orientation, given by a set of
objects, each with a unique identifier. Therefore, we regard the enumerable
set ID of object identifiers as an element of each model.

In any system objects interact by means of call message passing. By this
term we express that objects on the one hand communicate via a sequential
call-return mechanism, but on the other hand have the possibility to send
messages asynchronously, which means that the receiver may neither deny
messages nor block the sender of a message. Both communication mecha-
nisms are treated within one framework in detail in Paech & Rumpe (1997).

Asynchronous communication models provide the most abstract models for
systems with message exchange, since deadlock problems as in synchronous
systems do not occur. To model communication between objects we use the
theory of timed communication histories as given in Broy et al. (1993). The
notion of explicit time in the system model allows us to deal with real time,
as proposed in UML.

We regard our objects as spatially or logically distributed and as interacting
in parallel. As described in UML, sequential systems are just a special case,
where always exactly one object is “active”.

call

return

. ‘.'E, .

VA o Message V
Object
(o)
communication medium
yStem sys

Figure 3: Objects in the UML system model

Interaction between objects occurs through the exchange of messages, as
shown in Figure 3. Let MSG be an element of the system model, denoting
the set of all possible messages in a system. An object with identifier «d € 1D
accepts a unique set of messages. Its input interface is defined by
msg;q € MSG

The behavior of an object is the relationship between the sequences of mes-
sages it receives and the sequences of messages it emits as a reaction to
incoming messages. We allow our objects to be nondeterministic, such that
more than one reaction to an input sequence is possible.

According to Broy et al. (1993); Broy & Stolen (1994), the set of timed com-
munication histories over M is denoted by M¥. A communication history
is basically an infinite sequence containing (possibly only a finite number
of) messages and time stamps inbetween, that mark time progress. Thus
the messages occurring in a communication history are in linear order. A
communication history models the observable sequence of incoming or out-

going messages of one object. The behavior of a nondeterministic object
1d is then given by the mapping of its input stream to the set of possible
ouput streams. Using relations, the behavior of an object id is given by the
relation between its input and output streams
behavior;g C msg?, x MSG”

Objects encapsulate data as well as processes. Encapsulation of data means
that the state of an object is not directly visible to the environment, but can
be accessed using explicit communication. Encapsulation of process means
that the exchange of a message does not imply the exchange of control: each
object can be regarded as a separate process. Note, that this view on object
controls also works in conventional sequential programs. Objects get active
when receiving a message and fall asleep after emitting a message. Given
the set of possible states STATE of objects in a system, the function states
assigns a subset of possible states to every object id:

states;g € STATE

Furthermore, a state transition system is associated with each object, model-
ing the connection between the behavior and the internal state of an object.
We use a special kind of automata (Grosu & Rumpe (1995)) for this purpose.

An automaton of an object with identifier id consists of a set of input mes-
sages msg,,, a set of output messages MSG, a set of states states;q, and a
set of initial states states); C states;y. The nondeterministic transition rela-
tion ;4 defines the behavior of the automaton. From the state-box behavior,
given for the automaton in terms of state transitions, the black-box behavior
in terms of the behavior-relation can be derived (Grosu & Rumpe (1995)).

Messages are delivered by a communication medium, which is an abstraction
of message passing as it is done in real systems by the runtime system of
the programming language in combination with the operating system. The
communication medium buffers messages as long as necessary. Each message
contains the receiver’s identifier, so that the communication medium con-
tains of a set of message buffers, one for each object. The order of messages
between two particular objects is always preserved by the communication
medium. The contents of messages are not modified. Messages cannot be
duplicated or lost. No new messages are generated by the communication
medium. This is formalized in Grosu et al. (1996).
Each system allows a possible set of system runs. A system run is charac-
terized by the messages exchanged between all the objects and the sequence
of their states. We thus characterize a system run by the following three
functions:

input : ID — MSGY¥

output : ID — MSGY

state : ID — STATE®

associating with each object identifier the stream of messages the object
receives in a run, the stream of messages the object emits in a run, and
the stream of states the object has during the run. Of course, this trace
like view on a system is strongly interconnected with the automaton based

view given previously. The use of this trace like view is only possible, if
objects are regarded as process capsules and therefore each computational
step equals one step of an automaton (of the above characterized type) for
exactly one object. Furthermore, as objects don’t share common variables,
computational steps of different objects cannot interfere and can therefore
be serialized.

Objects are grouped into classes. We assume that each system owns a set CN
of class names. CN may, for instance, be derived from UML class diagrams.
In object-oriented systems, each object identifier denotes an object that
belongs to exactly one class. This fact is represented by the function

class : 1D — CN.

Classes are structured by an inheritance relation, which we denote by . C .
(read: “subclass of”). The inheritance relation is transitive, antisymmetric
and reflexive, as usual. With every class ¢ € CN a signature X, is associated,
containing all attributes and methods together with their argument and
result types. The signature induces a set of input messages and a set of states
for each object of the class. One impact of inheritance is that signatures are
only extended: cC d = ¥,; C 3.

Another concept of object-orientation is the dynamic creation of objects.
Deletion need not be modeled, as we assume that our objects are garbage
collected in the usual way. However, we may define a special finalize()-
method that may be used to clean up objects, as, for instance, in Java.

Initially, a finite subset of objects (usually one main-object) exists and is
active. We regard all other objects to be created in the course of a system run
and to be active after having received a first message. Thus, the creation of a
new object essentially consists of a message transmission from the creator to
the created object. To allow this, each object is equipped with a sufficiently
large (usually infinite) set of object identifiers denoting the set of all object
identifiers the object may create:

creatables : ID — P(ID)

To prevent multiple creation, these sets of identifiers have to be pairwise
disjoint, and objects that are initially active are not creatable at all.

3 Views

In the following section, we explore the meaning of a “view”. Afterwards,
we briefly explore which UML notation describes which aspects of a system.

3.1 Views and projections

A view of a system is a projection of the system on one of its relevant aspects.
Such a projection emphasizes certain aspects and ignores others. Therefore
it is useful to have different views of a system. This also allows each stage of
the development to concentrate on relevant aspects and to delay others, that

are at the moment less important. In general different kinds of projections
can be found, that are rather orthogonal and therefore constitute different
dimensions:

e Projection on development phases: The same “thing” may have differ-
ent appearances during analysis, design and implementation phases,
and therefore described by different notations, or even not appear at
all.

e Projection on structural, behavioral, interface and data aspects.

In general a projection can be any combination of the above mentioned
kinds.

A document describes such a projection. As each document is of a cer-
tain kind, it projects certain aspects of the system, that can be described
within the document. UML therefore uses multiple notations, that focus on
different aspects, therefore exhibiting different “views” of the system.

Basically there are four main views:

e The structural view focuses on the structure of a system. It describes
layout between objects and classes, their associations and their possible
communication channels.

e The behavioral view focuses on the behavioral aspect of the system
components. It describes how they interact, and characterizes the
response to external system operations.

e The data view focuses on the data aspects of the system. It describes
the state of the system units (objects), as well as their relationships.

e The interface view focuses on the encapsulation of system parts, and
the possible usage from outside, e.g., through characterizing signa-
tures.

Although these four views focus on different aspects, there are close rela-
tionships between them. Therefore it can be expected, that the notations,
describing these views are also related, and that there are context conditions
between them. This is currently one of the major problems of UML.

3.2 Notations of UML

UML currently has as many as eleven different and partly overlapping nota-
tions, which constitute different views of UML designs. In the following, we
will discuss briefly, which notation can be used to describe certain aspects,
without introducing the notations (this can be found in one of the various
UML books, e.g. Burkhardt (1997); Booch et al. (1996)).

Class diagrams are the central notation for structural aspects. They de-
fine classes, their associations and how they are aggregated. However
it is also possible to add data information, as each class can have an
attribute section. Furthermore the connection to behavioral aspects
is given by a method signature section, that can also be attached to
classes.

Besides defining structural aspects, a class diagram may be used as
source of data information, when transforming it into a database schema
definition.

Object diagrams describe the actual layout of a part of the system within
a certain situation. They clearly focus on structure, partly on con-
tained data, and have to be compatible with the class diagrams. They
can serve as a basis for behavioral descriptions.

Packages group classes (resp. their implementations) together. Their main
focus is the definition of interfaces. They also define structure, but on
a different level than class or object diagrams do: A package structures
interfaces and implementations and is important during development.
Relationships between packages are usually rather independent from
the relationships between their included classes. Also due to the dy-
namics of object-orientation, this is again, to some extent, independent
of the structure of the instantiated objects. Therefore we have different
levels of structural views to be served.

Use case diagrams show the relationships among actors and use cases
within a system. Although the concept of use cases seems to be very
helpful, the actual use of this notation is to some extent unclear and
will heavily depend on the method, which is still in development. How-
ever, use cases deal with interface and behavioral aspects at the border
of the system. They exhibit possible actions to be taken, and who is
allowed to undertake these actions. This means that there is also some
structural aspect within the current UML use case notation.

Sequence diagrams describe a pattern of interaction among objects. In-
teractions between participating objects are arranged in timed se-
quences similar to Message Sequence Charts (MSC). Sequence dia-
grams therefore clearly define behavioral aspects but are based on
structural and interface views.

Object lifelines are somewhat similar to sequence diagrams, but focus
more on the control structure of an object and its related thread. They
deal with the lifetime of a single object. They are used for describing
behavioral aspects of a single object and are therefore more implemen-
tation oriented than ordinary sequence diagrams.

Collaboration diagrams are based on object diagrams, exhibiting a cer-
tain (numbered) flow of messages between objects in order to describe

interaction between the participants. Collaboration diagrams and se-
quence diagrams are very similar in content, and it seems it is to some
extent a matter of taste, which notation is to be preferred. Collabora-
tion diagrams therefore also focus on behavior pattern.

Design patterns as introduced in UML comprehend a compact notation
for collaboration patterns and are incorporated into class and object
diagrams.

State diagrams are the central notation for describing behavior of a single
object. This behavior description is based on the state space the ob-
ject has, and it is also related to the message interface. State diagrams
are therefore the central notation to relate data aspects and behavioral
aspects of objects. It was therefore natural to enhance state diagrams
with many features for different purposes. Examples are hierarchical
structuring of the state space, state activities, entry and exit actions,
state dependent attributes, or the history mechanism. Also hierar-
chical structuring of the event set and complex transitions have been
defined. However, these newly added concepts interact with each other
in ways, that have not yet been fully explored, and it seems advisable
not use them too much.

Activity diagrams are defined as “a special case of a state diagrams”
(Booch et al. (1996)), where the occurring states are named as “ac-
tion states”. However, there are serious doubts about that. It could be
wise to regard activity diagrams as a form of data flow diagrams with
additional components for control flow. Therefore activity diagrams
could be useful for describing internal processing of operations (or use
cases). Thus they clearly focus on behavioral aspects of individual
components, but more on its functional decomposition into different
actions.

Swimlanes in activity diagrams, furthermore allow the decomposition
and regrouping of a series of actions for implementation by different
objects.

Other notations exist, that are more implementation oriented, and thus
mainly deal with the physical structure of a system. These notations only
partly deal with some of the above mentioned views:

Component diagrams show the dependencies among software components.

Deployment diagrams show the configuration of runtime processing ele-
ments, processes and the objects that live on them.

4 Methodological Aspects

At the current stage, UML is not more than a syntactic framework for
system specification. What is missing to make UML to a full-fledged software

engineering method is what the word "method” is characterizing: a set
of rules that guide the designer to obtain a runnable and correct system
implementation.

In this section we will discuss in more detail what aspects a method should
cover and identify three kinds of methodological rules (subsection 4.1). Sub-
section 4.2 sketches our view of the design process and its interconnection
with the methodological rules. We give an idea of document graphs doc-
umenting design decisions and the dependencies between the specifications
developed during design.

4.1 What a method is

It is not easy to define what a method is and we do not want to give an
exact definition here. It is however certain that a method consists, apart
from the notations themselves, of a set of rules and steps guiding through the
design process. The design process is generally defined to be the sequence of
specifications developed during the lifetime of the software system (including
documents specifying extensions and modifications of the system).

The design process for large systems is very complex and thus the method-
ological rules deal with many different aspects and activities during design.
In order to come closer to the kernel aspects of a method, we distinguish
rules at three levels of abstraction,

e process models

e procedural guidelines and

e technical steps. !

Process Models. Rules on a high level of abstraction structure the design
process as a whole. Typically they define design phases and the kind of
documents that have to be produced in these phases. We call a set of such
rules a process model.

Examples of process models are the classic waterfall model or the spiral
model (cf. Boehm (1994)). A characteristic of these models and of pro-
cess models in general is that they are independent of notations and even
independent of the underlying system view (function oriented or object ori-
ented).

Nevertheless it can be observed that process models in an object oriented
setting follow a different design philosophy than the classic models and sup-
port a more activity oriented design process than a phase oriented design
process. Such activities during the development are analysis, implementa-
tion and testing, but also prototyping and reuse. In this way, the design
process becomes more flexible and adaptable to particular needs.

!The latter two terms have been taken from Hussmann (1994), however with a slightly
different meaning

Procedural Guidelines. Process models are mainly concerned with the
question of when particular specifications have to be produced. In addition,
rules at a lower level of abstraction support the designer how to produce a
specification. These kinds of rules are in most cases of a heuristic, informal
nature. They are formulated in the terminology of the underlying system
view but independently of particular notations (e.g. types of diagrams). In
the sequel we will call these rules procedural guidelines.

As an example, many object oriented methods give procedural guidelines to
support the designer in identifying objects, methods and attributes in the
application domain. Moreover the paradigm of design with use cases also
comes along with a set of procedural guidelines.

Technical Steps. Rules at the lowest level of abstraction are both depen-
dent of the system view and of the notations used. We call them technical
steps.

Technical steps deal with the transformation of documents during the design
process and with the interrelation of different notations. As an example,
technical steps give rules for the refinement of diagrams or rules that ensure
the consistency of a specification. Technical steps thus support the designer’s
understanding of the use of the description techniques and the production
of a sound and complete system specification.

In contrast to their importance, technical steps are the most neglected kind
of rules in today’s methods, since they require a deep understanding of both
the system view and the description techniques. While process models and
procedural guidelines are less amenable to a formal treatment due to their
heuristic nature, a formal foundation of the system view and the notations
like our model is an eminent basis for studying technical steps in a systematic
way.

In subsection 4.2 we sketch our view of the design process and clarify the
semantic treatment of technical steps within the semantic model. Before,
table 1 summarizes the concepts discussed in this section.

4.2 A View of the Design Process

A system specification in UML consists of a set of documents like sequence
diagrams, class diagrams or free text. In order to support the effective
management of a large number of documents, we extend this simple view
and consider a system specification to be a document graph containing the
following kind of information.

e The nodes of the document graph are UML documents.

e Each document in the graph has a state documenting its stage of de-
velopment.

e A set of relationships between nodes describe dependencies between
documents.

Document state. The document state is intimately connected with the
notion of a document lifecycle. Apart from information, by whom and when
some document has been created or updated, the document state reports
whether the document has been walidated (in case of informal and formal
documents), verified (in case of formal documents) or tested (in case of pro-
grams).

Further attributes determining the state of a document are the redundancy of
a document or its consistency. A document is redundant if all the properties
of the system it describes can be derived by other documents in the graph.

Document relationships. Documents in UML have been syntactically
decoupled as far as possible in order to support a flexible use during design.
Thus, it is the meta level that has to document the structure of specifications.
There are two main kinds of relationships in the document graph.

The first one is a kind of import or clientship relation. We call it the refers
to relation. The refers to relation is directed and relates a document with
the set of documents that have to be known in order to understand the
document. For instance, a sequence diagram always has to refer to some
class diagram in order to understand the labels of the object lifelines. As
a further example, a state diagram may refer to a class diagram or to a
method specification.

The second kind of relationship between documents is the transform rela-
tion. Also the transform relation is directed and relates specifications that
are involved in some transformational step during design. A document A
transforming a document B is the result of some technical step and describes
some aspect of the system in more detail than document B. More generally,
a technical step and the transform relation, respectively, may be based on
more than one document and may produce several documents.

In our semantic framework, the transform relation has its counterpart in
a semantic refinement relation on the semantic domain of documents. The
refinement relation guarantees that the system properties specified in earlier
stages are preserved during the development. Hence the technical steps
formulate conditions at the syntactic level of UML that ensure that the
refinement relation holds at the semantic level. The rules of the technical
steps have to be formulated for every kind of document and have to be
proved correct with respect to the semantic refinement relation.

In the current stage of development we have developed technical steps for the
development of class diagrams and state diagrams (Rumpe (1996)). Rules
concerning the interrelation between sequence diagrams and state diagrams
are currently under investigation (Breu et al. (1997)a). Table 1 sketches
the main idea of these technical steps. Figure 4 depicts a sample document
graph. It has to be stressed again that the depicted diagram is not an
UML document itself but a concept at the meta level, e.g. produced and
administrated by a tool. Moreover, document graphs are rather used as
a paradigm for managing the design process than as a kind of document
suitable for graphical representation.

Source of transformation: Class diagram(s)
Produced documents: Class diagram
Description
Allowed activities for the design of class diagrams are
the introduction of new classes, attributes and methods,
the introduction of new associations and inheritance relations,
the strengthening of invariants and
the integration of several class diagrams.

Source of transformation: State diagram
Produced documents: State diagram
Description
Allowed activities for the design of state diagrams are
the introduction of new states,
the refinement of states,
the introduction of new transitions under certain conditions,
the deletion of transitions.
The exact rules can be found in Rumpe (1996).

Source of transformation: Sequence diagram(s)

Produced documents: State diagram(s)

Description

Sequence diagrams describe exemplary event traces that may be
synthesized to complete descriptions in state diagrams. Sequence diagrams
roughly correspond to paths in the synthesized state diagram.

Table 1: Technical Steps for UML documents

Integrating the transform relation, a document graph does not only repre-
sent a system specification at a single stage of development but represents
the whole design process. Compared to the traditional view of the design
process as a sequence of system specifications the document graph view is
advantageous for several reasons.

First, the notion of document graphs supports a design which does not have
to be strictly phase oriented and homogeneous but enables the prototyping
of subsystems and the reuse of documents. In this respect, the notion of
document graphs is particularly suitable in an object oriented design envi-
ronment.

Second, a system specification in any case consists of documents at different
levels of abstraction (e.g. for documentation or communication purposes).
Thus, the representation of the whole design process in the document graph
is only a matter of consequence. It is clear that an explicit versioning concept
for documents is not needed in our framework since the sequence of design
steps is represented by a sequence of transform relations in the document
graph.

Docl

type: class diagram
state: validated

Doc2

type: sequence diagram
state: validated

Doc4

type: use case diagram
state: -

Po===== Doc3

type: sequence diagram
Doc5 state: -

type: state diagram
state: -

Legend

E UML Document with name D

D1 = D2 D1 refers to D2

Dl====»> D2 D2 transforms D1

Figure 4: A Sample Document Graph

5 Outlook and Further Work

In this paper, we have outlined directions for a stronger integration of the
description techniques provided by the Unified Modeling Language. The
underlying basis used for the integration is a mathematical model developed
in the SYSLLAB method, the system model.

This setting provides a rich field for future research activities. As a start,
precise mappings of the UML description techniques onto the mathematical
system model have to be defined. Based on them, notions of consistency
between development documents of the same or different description tech-
niques can be defined. Consequently, a further step of research would be to
use the interrelationships between the UML description techniques defined
on the basis of the system model to soundly integrate them methodically,
particularly on the level of the technical steps introduced in Section 4.1. The
last step, building upon such an integration framework, would be to develop
appropriate tools that support these techniques and the methodology.

References

BOEHM, B.W. (1994). A spiral model of software development and enhance-

ment. Software engineering notes, 11(4).

BOOCH, G., RUMBAUGH, J., & JACOBSON, I. (1996). The Unified Mod-
eling Language for Object-Oriented Development, Version 1.0.

BREU, R., GROSU, R., HOFMANN, CH., HUBER, F., KRUGER, 1.,
RUMPE, B., SCHMIDT, M., & SCHWERIN, W. (1997a). Describ-
ing Object Interaction: From Exemplary to Complete Descriptions. TUM-I
9737. Technische Universitat Miinchen.

BREU, R., GROSU, R., HUBER, F., RUMPE, B., & SCHWERIN, W.
(1997b). Towards a precise semantics for object-oriented modeling tech-
niques. In: KiLov, HAmM, & RUMPE, BERNHARD (eds), Proceedings

ecoop’97 workshop on precise semantics for object-oriented modeling tech-
niques. TUM-19725.

BROY, M., & STOLEN, K. (1994). Specification and refinement of finite
dataflow networks - a relational approach. Tech. rept. TUM-19412. Technis-
che Univeritat Miinchen.

BROY, M., DEDERICH, F., DENDORFER, C., FUCHS, M.,
GRITZNER, TH., & WEBER, R. (1993). The design of distributed sys-
tems - an introduction to FOCUS - revised version -. Tech. rept. SFB-Bericht
342/2-2/92A. Technische Universitdt Miinchen.

BURKHARDT, R. (1997). UML - unified modelling language - objektorientierte
Modellierung fur die Praxis. Addison Wesley.

GROSU, R., & RUMPE, B. (1995). Concurrent timed port automata. Tech.
rept. TUM-19533. Technische Univeritat Miinchen.

GROSU, R., KLEIN, C., & RUMPE, B. (1996). Enhancing the syslab system
model with state. TUM-I 9631. Technische Universitat Miunchen.

HUSSMANN, H. (1994). Formal Foundations for SSADM. Technische Univer-
sitat Miinchen, Habilitationsarbeit.

KLEIN, C., RUMPE, B., & BROY, M. (1996). A stream-based mathemat-
ical model for distributed information processing systems - SysLab system
model - . Pages 323-338 of: ELIE NAIJM, JEAN-BERNARD STEFANI (ed),
Fmoods’96 formal methods for open object-based distributed systems. ENST
France Telecom.

PAECH, B., & RUMPE, B. (1997). State based service description. In: DER-
RICK, JOHN (ed), Formal methods for open object-based distributed systems.
Chapman-Hall.

RUMPE, B. (1996). Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. Herbert Utz Verlag Wissenschaft. PhD thesis, Technische Univer-
sitat Minchen.

