
Integrated Definition of Abstract and Concrete
Syntax for Textual Languages

Holger Krahn, Bernhard Rumpe, and Steven Völkel

Institute for Software Systems Engineering
Technische Universität Braunschweig, Braunschweig, Germany

http://www.sse-tubs.de

Abstract. An understandable concrete syntax and a comprehensible
abstract syntax are two central aspects of defining a modeling language.
Both representations of a language significantly overlap in their structure
and also information, but may also differ in parts of the information. To
avoid discrepancies and problems while handling the language, concrete
and abstract syntax need to be consistently defined. This will become an
even bigger problem, when domain specific languages will become used
to a larger extent. In this paper we present an extended grammar for-
mat that avoids redundancy between concrete and abstract syntax by
allowing an integrated definition of both for textual modeling languages.
For an amendment of the usability of the abstract syntax it furthermore
integrates meta-modeling concepts like associations and inheritance into
a well-understood grammar-based approach. This forms a sound foun-
dation for an extensible grammar and therefore language definition.

1 Introduction

The definition of a language involves various kinds of activities. Usually a con-
crete and an abstract syntax is developed first, and then a semantics is designed
to define the meaning of the language [9]. These activities are complemented
by developing a type system, priorities for operators, naming systems etc. if
appropriate. Especially the definition of concrete and abstract syntax show a
significant redundancy, because domain concepts are reflected in both artifacts.
This leads to duplications which are a constant source of problems in an iter-
ative agile development of modeling languages. Despite general problems that
occur when two documents are used, like inconsistency checking and supporting
adequate ways to resolve them, domain concepts in the abstract syntax may be
expressed on different ways in the concrete syntax. On the contrary the abstract
syntax may contain elements that cannot be expressed in the concrete syntax of
the language. These potential problems unnecessarily complicate an efficient de-
velopment and evolution of languages, and therefore, an integrated development
of both artifacts is highly desirable.

Meta-modeling is a popular method to define the abstract syntax of lan-
guages. It simplifies the language development by allowing the designers to di-
rectly map the classes of a domain analysis [2] to classes in the meta-model,

associations and inheritance are directly part of the language definition. On
the other side, grammar-based language definitions yield trees with single root-
objects. Associations between leaves and an inheritance-based substitutability
are not commonly existent in grammars.

There are several approaches to derive a grammar and thus, a textual rep-
resentation from a given metamodel. These approaches often lack flexibility in
defining an arbitrary concrete syntax, it may even happen that the desired con-
crete syntax must be adapted in order to get an automatic mapping between
abstract and concrete syntax (e.g., [11]). This stands in contrast to a basic design
principle for DSLs [19] that already existing notations of the domain shall be
used unaltered. Beyond that, one main argument for defining concrete syntax
and abstract syntax separatly is that more than a one concrete syntax can be
used with a single abstract syntax. We argue, when dealing with DSLs this is
a minor aspect because usually in a single domain no two notations are used
that have the same expressiveness and therefore apply to same abstract syntax.
However, we suggest the use of two similar abstract syntaxes and a (simple)
model transformation for these rare cases.

The concrete syntax of a language is either texual or graphical. The graphical
concrete syntax is often defined by the structure of the abstract syntax and
a set of graphical representations for classes and associations in the abstract
syntax (e.g. [7]). Especially for languages that do not have an adequate graphical
representation, a textual syntax is used which is usually described by a context-
free grammar. Parser-generators, e.g. Antlr [14] or SableCC [5] can be used to
generate language recognition tools from this form of language definition. Since
we aim at textual concrete syntaxes, we concentrate in this paper on the second
approach.

The MontiCore framework [8] can be used for the agile development of tex-
tual languages, in particular domain-specific modeling languages (DSMLs). In
order to reduce the abovementioned redundancy, one of the main design goals
of the underlying grammar format was to provide a single language for spec-
ifying concrete as well as abstract syntax in a single definition. Associations,
compositions, and inheritance as known from meta-modeling can directly be
specified in this format. Such a language definition can be mapped to an object-
oriented programming language where the each production is mapped to a class
with strongly typed attributes. A parser is generated to create instances of the
abstract syntax from a textual representation.

Despite these main design goals, we decided to develop the MontiCore gram-
mar format in such a way, that the recognition power of the resulting parser is
only limited by the underlying parser generator, namely Antlr [14], which is a
predicated-LL(k) parser generator. Thus, it can not only be used for the develop-
ment of domain specific modeling languages but for general-purpose languages
like variants of Java or C++. The concrete syntax of the grammar format is sim-
ilar to the input format of common parser-generators. Therefore, users that have
already worked with such tools shall easily become familiar with it. The context-

free grammars can be extended with meta-modeling concepts like associations
and inheritance to define the abstract syntax of the modeling language.

The rest of the paper is structured as follows. Section 2 describes the syntax
of the MontiCore grammar format and its semantics in form of the resulting con-
crete and abstract syntax of the defined modeling language. Section 3 describes
an example that illustrates the clarity of the specification in the MontiCore
grammar format. Section 4 relates our approach to others whereas Section 5
concludes the paper and outlines future work.

2 The MontiCore grammar format

The MontiCore grammar format specifies a context free grammar with produc-
tions that contain nonterminals (reference to other rules) and terminals. Termi-
nals (also called identifiers) are specified by regular expressions. To simplify the
development of DSLs, the identifer IDENT and STRING are predefined to parse
names and strings. Identifiers are usually handled as strings, but more complex
identifers are possible by giving a function defined in the programming language
Java that maps a string to an arbitrary data type. Default functions exist for
primitive data types like floats and integers. Examples are given in Figure 1. In
line 2 the simple identifier IDENT is specified which is mapped to a String in the
abstract syntax. The identifier NUMBER in line 5 is mapped to an integer in
the abstract syntax whereat the default mapping is used. In line 8 the identifier
CARDINALITY is mapped to an int. The transformation is specified in Java
(line 10 and 11) and the unbounded cardinality is expressed as the value -1.

MontiCore-Grammar

1 // Simple name

2 ident IDENT (’a’..’z’|’A’..’Z’)+ ;

3

4 // Numbers (using default transformation)

5 ident NUMBER (’0’..’9’)+ : int;

6

7 // Cardinality (STAR = -1)

8 ident CARDINALITY (’0’..’9’)+ | ’*’ :

9 x -> int {

10 if (x.equals("*")) return -1;

11 else return Integer.parseInt(x);

12 };

Fig. 1. Definition of identifiers in MontiCore

The definition of a production in the grammar leads to a class with the same
name in the abstract syntax. The nonterminals and identifiers on the right hand
side of a rule can explicitly be given a name that maps to attribute names. For
unnamed elements we derive default names from the name of the nonterminal.

The identifiers form the attributes of the class whereas the nonterminals lead to
composition relationships between classes in the abstract syntax. The type of at-
tributes in the abstract syntax is inferred automatically, the types of identifieres
are handled as described before, attributes which form a composition relation-
ship are typed with the class of the target rule. Thus, the attribute name of the
rule Client in line 7 of Figure 2 results in a string attribute in the corresponding
class of the abstract syntax, whereas Address in line 8 results in an attribute of
the type Address. Additionally, the structure of a production is analyzed to de-
termine the cardinality of the attributes and compositions. Doing so, attributes
that occur more than once are realized as lists of the corresponding data type.
This approach allows to specify constant separated lists without an extra con-
struct in the grammar format. The term a:X ("," a:X)* can be used on the
right hand side of a grammar rule and desribes a comma-separated list of the
non-terminal X. It results in a composition named a with unbounded cardinality
that contains all occurrences of X. Therefore, terminals and identifiers with the
same name contribute to the same attribute or composition.

Figure 2 shows an excerpt of a MontiCore grammar. The class section shows a
UML class diagram of the abstract syntax that is created from the productions.
In the MontiCore framework this class diagram is mapped to a Java imple-
mentation where the production names are used as class names. All attributes
are realized as private fields and public get- and set-methods. The composition
relationships are realized in the same way as attributes and contribute to the
constructor of the class. All classes support a variant of the Visitor pattern [6]
to traverse the abstract syntax along the composition relationships.

In addition to the already explained nonterminals and identifiers, constant
terminal symbols like keywords can be added to the concrete syntax of the
language. These elements are not directly reflected in the abstract syntax if they
are unnamed. Note that in contrast to many parser generators and languages
like TCS [11] there is no specific need for distinguishing between keywords like
“public” and special symbols like “,”. To further simplify the development of a
modeling language we generate the lexer automatically from the grammar. By
this strategy the technical details like the distinction between parser and lexer
(necessary for the parser generator) are effectively hidden from the language
developer.

As explained above, keywords are not directly reflected in the abstract syn-
tax as attributes, but may influence the creation of the AST by distinguishing
productions with the same attributes from each other. The situation is different
for reserved words that determine certain properties of domain concepts. An ex-
ample is shown in Figure 3 where the reserved word premiumclient determines
the value of an attribute of the domain concept client. The grammar format uses
constants (inside brackets) to express this fact. Single value constants are trans-
lated to booleans whereas multi-value constants are mapped to enumerations.

The languages defined through the grammar in Figure 2 and the substituted
grammar in Figure 3 are equal. But their abstract syntax is quite different. The
concrete syntax poses the invariant that clients cannot have a discount whereas

MontiCore-Grammar

1 ShopSystem =

2 name:IDENT

3 (Client | PremiumClient)*

4 (OrderCreditcard | OrderCash)*;

5

6 Client =

7 "client" name:IDENT

8 Address;

9

10 PremiumClient =

11 "premiumclient"

12 name:IDENT discount:IDENT

13 Address;

14

15 OrderCreditcard =

16 "creditorder"

17 clientName:IDENT billingID:IDENT;

18

19 OrderCash =

20 "cashorder"

21 clientName:IDENT amount:IDENT;

22

23 Address =

24 street:STRING town:STRING;

Fig. 2. Definition of productions in MontiCore

MontiCore-Grammar

1 Client =

2 premium:["premiumclient"]

3 name:IDENT discount:IDENT

4 | "client" name:IDENT;

Fig. 3. Use of constants

premium clients do have one. This invariant is not visible in the abstract syntax
from Figure 3. On the other hand, the abstract syntax resulting from Figure 2
doesn’t reflect the similarities between Client and PremiumClient resp. Order-
Cash and OrderCreditcard. This example motivates the use of more advanced
features of the MontiCore grammar format to represent the invariants and simi-
larities directly in the grammar. Despite very general constraint definitions (like
OCL), inheritance allows us to deal with similarities and associations with con-
nections between related nodes of the AST.

2.1 Interfaces and Inheritance between Nonterminals

The abstract syntax shown in Figure 2 raises the question how an interface
Order that both classes OrderCreditcard and OrderCash implement can be
added to the abstract syntax and how it can be expressed that premium clients
are special clients. For this purpose we decided to extend the grammar format
by allowing to express an inheritance relationship and to define interfaces which
can be implemented by nontermianls.

The inheritance relationship between two productions is expressed by includ-
ing the rule name of the super-production after the production name of the sub-
production using the keyword extends (Figure 4, left, line 16). This inheritance
of rules is directly reflected in the abstract syntax as an object-oriented inheri-
tance. In the parser an additional alternative is added to the super-production.
This concept is motivated by the definition of object-oriented inheritance where
each occurrence of a superclass can be substituted by a subclass. The EBNF sec-
tion in Figure 4, right, shows a representation with equivalent concrete syntax
to explain the mapping of the MontiCore grammar format to the input format
of a parser generator.

The grammar on the right hand side in Figure 4 defines the same concrete
syntax as the one on the left, but has additional Order and Client rules. How-
ever, we have decided to use an OO style of inheritance instead of the traditional
grammar style to get more flexibility in extending languages. In the left grammar,
Client need not be changed when extending the language with PremiumClients.
This is a significant benefit that we will further explore when defining operators
on the language.

Due to experience in designing languages with this grammar format, we de-
cided to decouple the concrete syntax of the both productions (sub- and super-
production). This allows the language designer to decide freely on the concrete
syntax and minimizes non-determinisms in the grammar.

This form of inheritance also allows the definition of superinterfaces using
the keyword implements (Figure 4, left, line 5 and 9). Interfaces can be used
as normal nonterminals on the right hand side of any production. By default
a interface does not contain any attributes. We decided against an automatic
strategy where all common attributes of known subclasses are taken, as the
interface may be a good place for future extensions of the defined language
which only use a subset of all available attributes.

Additional attributes may be added to interfaces and classes by using the
ast section in a grammar (Figure 4, left, line 25). This block uses the same
syntax as inside the production but only produces attributes in the abstract
syntax and does not interfere with the concrete syntax. The attributes of inter-
faces are realized as get- and set-methods in the Java implementation. Figure 4
illustrates the inheritance capabilities of the grammar format extending the ex-
ample. The EBNF section shows the equivalent EBNF syntax used for parsing
and the resulting abstract syntax can be found in Figure 5.

MontiCore-Grammar

1 ShopSystem =

2 name:IDENT

3 Client* Order*;

4

5 OrderCreditcard implements Order =

6 "creditorder"

7 clientName:IDENT billingID:IDENT;

8

9 OrderCash implements Order =

10 "cashorder"

11 clientName:IDENT amount:IDENT;

12

13 Client =

14 "client" name:IDENT Address;

15

16 PremiumClient extends Client =

17 "premiumclient"

18 name:IDENT discount:IDENT;

19

20 Address =

21 street:STRING town:STRING;

22

23 interface Order;

24

25 ast Order =

26 clientName:IDENT;

EBNF

1 ShopSystem ::=

2 IDENT Address

3 Client* Order*

4

5 OrderCreditcard ::=

6 "creditorder"

7 IDENT IDENT

8

9 OrderCash ::=

10 "cashorder"

11 IDENT IDENT

12

13 Client ::=

14 "client" IDENT Address

15 | PremiumClient ;

16

17 PremiumClient ::=

18 "premiumclient"

19 IDENT IDENT

20

21 Address ::=

22 STRING STRING

23

24 Order ::=

25 OrderCredit | OrderCash

26

Fig. 4. Inheritance and use of interfaces

2.2 Associations between Nonterminals

The attributes name in Client and clientName in Order (see Figure 5) are
obviously semantically connected. The invariant that an order may only use
client names that exists cannot be expressed in a context-free grammar format.
When designing a meta-model this relation is usually expressed by an associ-
ation where an order references a client as the ordering person. Therefore, the
extended context-free grammar allows to add associations and mimic typical
meta-modeling techniques in grammars. The result of this extension is an ar-
bitrary graph with an embedded spanning tree that results from the original
grammar.

The block association allows to specify non-compositional associations be-
tween rules which enables the navigation between objects in the abstract syntax.
This concept allows to specify a uni-directed navigation from one object to a
specified number of other objects. In addition, an opposite association can be
specified that reverses the first association. An example for an association can
be found in Figure 6 (line 17-21) where the association OrderingClient connects
one Order object with a single Client. The reverse association is named Order

Fig. 5. Abstract syntax of the language defined in Figure 4

(the name is automatically derived from the target) which connects one Client
object with an unbounded number of Order objects. This form is very similar
to the associations in EMF [1].

The main challenging question for associations in a unified format for concrete
and abstract syntax is not the specification but to automatically establish the
links between associated objects from a parseable textual input. Grammar-based
systems usually parse the linear character stream and represent it in a tree-based
structure that has the same structure as the grammar. Then symbol tables are
used to navigate between nodes in the AST that are not directly connected. The
desired target of navigation is determined by identifiers in source and target
nodes and a name resolution algorithm.

Due to the simple nature of many languages that lack namespaces, simple
resolution mechanisms like file-wide unique identifiers can often be used for an
establishment of associations. This of course does not always work. E.g., lan-
guages like Java and many UML-sublanguages do have a more sophisticated
namespace concept.

Therefore, we decided to use a twofold strategy: First, we generate inter-
faces that contain methods induced by the association to navigate between the
AST-objects. The resulting classes of the abstract syntax allow the access of
associations in the same way as attributes and compositions are accessed. Sec-
ond, we generate implementations for simple resolving problems like file-wide
flat simple or hierarchical namespaces. As an alternative, the DSL developer can
program his own resolving algorithms in the second step if needed.

Figure 6 extends the example from Figure 5 by adding an association specifi-
cation. The association orderingClient connects each Order to a single Client
(as specified by 1). Order is the inverse association from Client to Order with
unbound cardinality (as specified by *). In addition to the shown cardinalities,
ranges like 3..4 are possible values.

MontiCore-Grammar

1 OrderCreditcard implements Order =

2 "creditorder"

3 iD:IDENT amount:IDENT;

4

5 OrderCash implements Order =

6 "cashorder"

7 iD:IDENT amount:IDENT;

8

9 Client =

10 "client" name:IDENT

11 Address;

12

13 PremiumClient extends Client =

14 "premiumclient"

15 name:IDENT discount:IDENT;

16

17 association {

18 Order.orderingClient

19 * <-> 1

20 Client

21 }

Fig. 6. Specification of associations

Figure 7 sketches a Java implementation of the class diagram from Figure 6
with the most important methods. A Binding-Interface is generated for each
interface or class that is involved in an association as either source or target.
This interface contains the relevant methods for the navigation between different
nodes. In addition a Resolver is generated for each class or interface which allows
the resolving of a Binding-object from an AST-object.

Fig. 7. Java implementation of an association

Note that these interfaces are generated to simplify the use of associations
for a DSL. When simple resolving algorithms are appropriate, MontiCore can
generate both Binding-implementations and a single Resolver-implementation
that resolves all objects automatically. The complexity of multiple classes with
different responsibilities is hidden from the user of the abstract syntax, e.g. a
programmer of a code generator for the developed language. He simply uses the
get- and set-methods like the shown getOrderingClient() method that returns
the client object which is referred from this order.

3 A demonstrating Example

To demonstrate the usability of our approach to specify a modeling language we
use a simplified version of finite hierarchical automata as shown in Figure 8.

Automaton

1 automaton PingPong {

2 state <<initial>> NoGame;

3 NoGame - startGame > InPlay;

4 InPlay - ["doStopGame()"] stopGame > NoGame;

5 state InPlay {

6 state <<initial>> Ping;

7 state Pong;

8 }

9 Ping - returnBall > Pong;

10 Pong - returnBall > Ping;

11 }

Fig. 8. Example for finite hierarchical automata

An automaton has a name and consists of several states and transitions.
States in turn may be initial or final and may have substates. Transitions have
a source and a target state, an event models the condition for the transition. In
order to demonstrate a possible field of application for grammar rule inheritance,
a transition may have an action which will be executed when a transition was
performed. Figure 9 shows a first version of the MontiCore grammar.

In our example transitions refer to states as source and target which will be
identified by their name. Thus, the generated class Transition contains string
attributes from and to containing the names of these states. This is ineffective
because a direct navigation from transitions to their source or target is not
possible. Furthermore, there is no information in states about their ingoing and
outgoing transitions. The abovementioned concept association can be used to
solve this. An appropriate association extending Figure 9 is defined in Figure 10.

This definition leads to attributes which refer to states and transitions di-
rectly. They have to be filled by an appropriate resolve mechanism depending

MontiCore-Grammar

1 package mc.languages.automaton;

2

3 grammar Automaton {

4

5 Automaton = !"automaton" name:IDENT "{"

6 (State | Transition)*

7 "}";

8

9 State =

10 !"state" name:IDENT

11 ("<<" initial:[!"initial"] ">>" | "<<" final:[!"final"] ">>")*

12 ("{" State* "}" | ";") ;

13

14 Transition = from:IDENT "-" event:IDENT ">" to:IDENT ";";

15

16 TransitionWithAction extends Transition =

17 from:IDENT "[" action:STRING "]" "-" event:IDENT ">" to:IDENT ";";

18 }

Fig. 9. Basic definition of finite hierarchical automata in MontiCore

MontiCore-Grammar

1 association {

2 Transition.fromState * <-> 1 State.outgoingTransitions * ;

3 Transition.toState * <-> 1 State.incomingTransitions * ;

4 }

Fig. 10. Definition of non-compositional associations between states and transitions

on the underlying naming system. As described in Section 2.2, MontiCore sup-
ports different kinds of resolve mechanisms, in this example we use the simplest
version, namely file-wide unique identifiers which is defined by the concept sim-
plereference. Therefore, states must have a unique name within the automaton
and transitions use that name in order to reference these states. Beyond that,
we have to specify that our concept for simple references should be used in order
to resolve the associations defined in Figure 10. Therefore, the code of Figure 11
has to be added to our automaton grammar (Figure 9).

MontiCore-Grammar

1 concept simplereference {

2 fromState: Transition.from -> State.name;

3 toState: Transition.to -> State.name;

4 }

Fig. 11. Using concept simplereference to resolve source and target of transitions

Given both, the definition of simple references and the concept association,
the MontiCore framework ensures the following constraints.

1. Each transition refers exactly one state as source and target, respectively.
2. Each referenced state has a unique name within all referenced states.
3. The method getIncomingTransitions() of a state returns all transitions which

refer to that state as target. Therefore, incomingTransitions is the opposite
association of ToState.

4. The method getOutgoingTransitions() of a state returns all transitions which
refer to that state as source. Therefore, outgoingTransitions is the oppo-
site association of FromState.

Another useful feature we want to present in this example is the concept
classgen. It can be used in order to add attributes as well as methods into the
abstract syntax. Therefore, it has to be defined which class should be extended
and what should be added to that class. Again, the example shown in Figure 12
can be added to the basic grammar (Figure 9). It adds the boolean method
isDirectlyReachable to the abstract syntax class State which calculates if one
state is directly reachable from this state.

MontiCore-Grammar

1 ast State =

2 method public boolean isDirectlyReachable(State target) {

3 for (Transition t: getOutgoingTransitions()){

4 if (t.getToState().equals(target)){

5 return true;

6 }

7 }

8 return false;

9 };

Fig. 12. Using an ast block to add methods to states

Summarizing, we have developed a grammar for finite hierarchical automata
in a few lines of code. Non-compositional bi-directional associations are sup-
ported and filled automatically by a simple naming system which ensures cor-
rect cardinalities. An example of an additional method defined in Java enhances
usability as well as it prevents editing the generated code.

4 Related work

We are currently not aware of a language that allows specifying both a textual
concrete syntax and an abstract syntax with (non-compositional) associations
in a coherent and concise format. Grammar-based approaches usually lack a

strongly typed internal representation (for exceptions see below) and the exist-
ing model-based approaches use two forms of description, a meta-model for the
abstract syntax and a specific notation for the concrete syntax.

In [15] a phylum/operator-notation is used to describe the abstract syntax
of a language. The notation of alternate phylums achieves similar results as the
object-oriented inheritance we use, although our tied coupling of the abstract
syntax to a programming language allows the direct use of the inheritance to
simplify the implementation of algorithms working on the abstract syntax.

SableCC [5] is a parser-generator that generates strictly-typed abstract syn-
tax trees and tree-walkers. The grammar format contains actions to influence
the automatic derivation of the AST. In contrast to MontiCore, SableCC does
not aim to include associations in its AST.

In [18] an algorithm is presented that derives an (strongly typed) abstract
syntax from a WBNF grammar (an BNF variant). The main difference in the
derivation to our approach is the use of an explicit notation for lists that are
separated by constants and that nonterminals with same name do not contribute
to the same attribute in the abstract syntax.

The Grammar Deployment Kit (GDK) [12] consists of several components
to support the development of grammars and language processing tools. The
internal grammar format can be transformed into inputs of different parser gen-
erators, such as btyacc [3], Antlr [14] or SDF [10]. Furthermore, it provides
possibilities for grammar adaption, like renaming of rules or adding alterna-
tives. In opposition to our approach it does not support extended concepts like
inheritance or associations.

In [4] and [13] the Textual Concrete Syntax Specification Language (TCSSL)
is described that allows the description of a textual concrete syntax for a given
abstract syntax in form of a meta-model. TCSSL describes a bidirectional map-
ping between models and their textual representation. The authors describe tool
support to transform a textual representation to a model and back again.

In [11] a DSL named TCS (Textual Concrete Syntax) is described that spec-
ifies the textual concrete syntax for an abstract syntax given as a meta-model.
The described tool support is similar to the one we used for the MontiCore
framework and the name resolution mechanisms are the same that we gener-
ate automatically from the grammar format. In contrast to our approach, two
descriptions for abstract and concrete syntax are needed.

5 Conclusion

This work presents a new approach where an extended grammar format is used
to specify both, abstract and concrete syntax of a modeling language. By using a
single format it avoids general problems that occur when abstract and concrete
syntax are described by two different languages like inconsistency checking and
resolving by construction.

As special concepts, we added the possibility to define associations between
AST nodes based on name references and we allow inheritance of grammar rules

that does not affect the super-rule at all. This paves the way for extensible
languages.

We also implemented a prototypical framework called MontiCore that is
based on an established parser-generator. It is able to parse textual syntax and
generates the model representation as both Java and EMF classes. The proto-
type is able to parse multiple language definitions like UML/P [17, 16] and a
complete Java 5 grammar. In addition the system is bootstrapped and currently
about 75% of the code is generated from several DSLs.

In future we especially want to explore which resolution mechanisms can be
used to create links between objects (that conform to the specified associations).
The mechanisms for resolving imports in models and inheritance seem to be
promising candidates for generalization.

We mainly treated the transformation from concrete syntax to abstract syn-
tax representation in this paper. The opposite transformation, where a model is
transformed to a concrete (textual) representation could be realized in different
ways: Hand coded java code, template engines etc. In the future we like to ex-
plore which additional information has to be included in the grammar format to
allow the automatic generation of concrete syntax representations.

The current implementation of the parser generation in the MontiCore frame-
work is based on Antlr version 2.x. The new version 3 simplifies the creation of
grammars by automatically calculating the necessary syntactic predicates for
alternatives where the linearized lookahead algorithm predicts false results. This
will reduce the number of required syntactic predicates and simplify the devel-
opment of readable grammars in MontiCore.

Acknowledgement: The work presented in this paper is undertaken as a part
of the MODELPLEX project. MODELPLEX is a project co-funded by the Eu-
ropean Commission under the “Information Society Technologies” Sixth Frame-
work Programme (2002-2006). Information included in this document reflects
only the authors’ views. The European Community is not liable for any use that
may be made of the information contained herein.

References

1. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose. Eclipse Modeling
Framework. Addison-Wesley, 2003.

2. K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

3. C. Dodd and V. Maslov. BTYACC – backtracking YACC. Siber Systems, 2006.
http://www.siber.com/btyacc/.

4. F. Fondement, R. Schnekenburger, S. Gerard, and P.-A. Muller. Metamodel-aware
textual concrete syntax specification. Technical report, LGL-REPORT-2006-005
Swiss Federal Institute of Technology in Lausanne, Switzerland, 2006.

5. E. Gagnon and L. Hendren. SableCC – An Object-Oriented Compiler Framework.
In Proceedings of TOOLS 1998, 1998.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

7. Graphical Modeling Framework (GMF, Eclipse technology subproject).
http://www.eclipse.org/gmf/.

8. H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel. MontiCore 1.0
- Ein Framework zur Erstellung und Verarbeitung domänenspezifischer Sprachen.
Technical Report Informatik-Bericht 2006-04, Software Systems Engineering Insti-
tute, Braunschweig University of Technology, 2006.

9. D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of ”seman-
tics”? Computer, 37(10):64–72, 2004.

10. J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF–Reference Manual—. 24(11):43–75, 1989.

11. F. Jouault, J. Bezivin, and I. Kurtev. TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering. In Proceedings of GPCE ’06, 2006.

12. J. Kort, R. Lämmel, and C. Verhoef. The grammar deployment kit. In Mark
van den Brand and Ralf Lämmel, editors, Electronic Notes in Theoretical Computer
Science, volume 65. Elsevier Science Publishers, 2002.

13. P.-A. Muller, F. Fleurey, F. Fondement, M. Hassenforder, R. Schneckenburger,
S. Gérard, and J.-M. Jézéquel. Model-driven analysis and synthesis of concrete
syntax. In Proceedings of MoDELS 2006 (LNCS 4199), pages 98–110, 2006.

14. T. Parr and R. Quong. ANTLR: A Predicated-LL(k) parser generator. Journal of
Software Practice and Experience, 25(7):789–810, July 1995.

15. T. Reps and T. Teitelbaum. The synthesizer generator. In Proceedings of the first
ACM SIGSOFT/SIGPLAN software engineering symposium on Practical software
development environments, pages 42–48. ACM Press, 1984.

16. B. Rumpe. Agile Modellierung mit UML : Codegenerierung, Testfälle, Refactoring.
Springer, Berlin, August 2004.

17. B. Rumpe. Modellierung mit UML. Springer, Berlin, May 2004.
18. D. Wile. Abstract syntax from concrete syntax. In ICSE ’97: Proceedings of the

19th international conference on Software engineering, pages 472–480, New York,
NY, USA, 1997.

19. D. Wile. Lessons learned from real DSL experiments. Science of Computer Pro-
gramming, 51(3):265–290, June 2004.

