Modeling in Software Engineering

Joanne M. Atlee
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
jmatlee@uwaterloo.ca

Robert France, Geri Georg
Department of Computer Science
Colorado State University
Fort Collins, Colorado
{france, georg}@cs.colostate.edu

Ana Moreira
Computer Science Department
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
2829-516 Caparica, Portugal
amm@di.fct.unl.pt

Bernhard Rumpe
Software Systems Engineering
Faculty for Computer Science
Mhlenpfordtstr. 23
38106 Braunschweig, Germany
b.rumpe@tu-bs.de

Steffen Zschaler
Institute for Software and Multimedia Technology
Faculty for Computer Science
Technische Universität Dresden
D-01062 Dresden, Germany
steffen.zschaler@inf.tu-dresden.de

1. Workshop Overview

The software modeling community is primarily concerned with reducing the gap between problem and software implementation through the use of models that describe complex systems at multiple levels of abstraction and from a variety of perspectives. A model is an abstraction of some aspect of an existing or planned system. Models are created to serve particular purposes, for example, to present a human-understandable description of some aspect of a system or to present information in a form that can be mechanically analyzed.

There is a perception that software models are primarily documentation artifacts and thus their creation and use are peripheral to software development. This narrow perspective fails to recognize that software development involves both explicit and mental models of both problems and solutions – that even software implementations are models, expressed in terms of abstractions provided by programming languages. From this perspective, software development is a modeling activity and thus there is a need for research that focuses on how to better leverage modeling techniques during software development. The presentations and discussions in this workshop will focus on the challenge of supporting the use of models in all phases of the software lifecycle, including the use of models at runtime. Discussions will focus on innovative technical ideas and experience related to identifying and evolving appropriate abstractions, manipulating and managing software models, and teaching and learning modeling techniques.

Software-modeling research evolves and integrates research results from a number of areas in computer science, including languages and semantics, visualization, translation and transformation, and analysis and reasoning. Applied to software engineering, it addresses problems in requirements, architecture, and detailed design modeling, including work on viewpoint conflict analysis and on feature interaction analysis. It encompasses the realization of model-driven engineering (MDE), whose vision of software development centers on systematic transformations of problem-level models to software implementations.

One of the objectives of this workshop is to build bridges to other software engineering research communities that facilitate collaborative research on software modeling problems. For example, work on formal specification techniques is particularly relevant. Modeling languages must have formally defined semantics if they are to be used to create analyzable models. Work on developing formal analysis tech-
niques for models utilizes and builds on work in the formal
specification research area. While it is currently the case
that popular modeling languages have poorly defined se-
manitics, there is a growing realization that MDE requires
semantic-based manipulation of models and thus appro-
priate aspects of modeling languages must be formalized.
From the other perspective, MDE can provide a valuable
context for formal-methods research, and can challenge the
formal-methods community to accommodate rich modeling
features and languages.

The need to deal with the complexity of developing and
operating adaptive software provides another opportunity
for the use of software-modeling techniques. This work-
shop will explore how the scope of software modeling can
be broadened to encompass research on the use of models
during the execution of software.

2. Workshop Topics and Objectives

This workshop will provide a forum for discussing the
challenges associated with modeling software, with incor-
porating modeling practices into the software development
process, and with teaching and learning modeling tech-
niques. The following are the key categories of technical
challenges that will be discussed:

• Abstraction challenges: These challenges arise from
 concerns associated with providing support for creat-
ing and using problem-level abstractions in modeling
languages, and for rigorously analyzing models. Prob-
lems associated with modeling systems using multi-
ple, overlapping viewpoints that utilize possibly het-
erogeneous languages also fall into this category. Top-
ics include domain-specific modeling, supporting sep-
aration and integration of concerns, modeling of non-
functional properties, modeling patterns and strategies,
and analyzing models.

• Model manipulation and management challenges:
 These challenges arise from problems associated with
 (1) defining, analyzing, and using model transforma-
tions, (2) maintaining traceability links among model
 elements to support model evolution and roundtrip en-
gineering, (3) maintaining consistency among view-
points, (4) tracking versions, and (5) using models dur-
ing runtime.

During the workshop key challenges will be identified,
modeling experience analyzed, and promising ideas ex-
plored. The aim is to develop a roadmap that can be used to
guide software-modeling research. The workshop will also
provide a forum in which researchers from the ICSE and
MODELS communities share experience and learn more
about each others’ perspectives on modeling research.

3. Workshop Structure

The workshop will be held over one and a half days. The
first day will be a half day event in which papers are pre-
sented. The second full day will consist of a half day of
presentations and a half day of informal discussion panels
in which lead discussants will stimulate discussions in three
topic areas:

• Abstraction challenges
• Model manipulation and management challenges
• Education issues

In order to foster lively discussions, each paper presen-
tation will be structured as follows:

1. A 15-minute presentation by an author of the paper,
summarising the key points in the paper.

2. A 5-minute counter-presentation by a participant of
the workshop. This presentation summarises the pa-
er from a different view point and exposes interesting
issues that can form the basis of a discussion.

3. A 10-minute slot for open discussions related or stim-
ulated by the paper presented.

Paper presentations will be structured into sessions each
grouping three thematically related papers.

The lead discussants in the panels will stimulate discus-
sion by presenting their views on research in the respective
areas and raising key research questions and challenges. In
the closing session of the workshop, the lead discussants
will summarize the discussions in terms of the research
questions and challenges that are considered to be critical to
further development of software-modeling knowledge and
technologies.